
CCA 2012

Ninth International Conference on

Computability and Complexity in Analysis

(extended abstracts)

June 24-27, 2012

Cambridge, UK

Edited by

Arno Pauly
Robert Rettinger
Klaus Weihrauch



Preface

The Ninth International Conference on Computability and Complexity in Anal-
ysis, CCA 2012, takes place on June 24-27, 2012 in Cambridge, UK. It is the
18th event in a series of workshops, seminars and conferences. For more infor-
mation about CCA see http://cca-net.de.

The conference is concerned with Computable Analysis, the theory of com-
putability and complexity over real-valued data. Computability theory studies
the limitations and abilities of computers in principle. Computational complex-
ity theory provides a framework for understanding the cost of solving computa-
tional problems, as measured by the requirement for resources such as time and
space. In particular, computable analysis supplies an algorithmic foundation of
numerical computation.

Scientists working in the area of computability and complexity over real
numbers and over more general continuous data structures come from different
fields, such as theoretical computer science, domain theory, logic, constuctive
mathematics, computer arithmetic, numerical mathematics and all branches of
analysis.

The conference programme consists of 18 contributed lectures and 7 invited
talks. We would like to thank all authors for their contributions and the pro-
gramme committee members and the additional referees for their careful refer-
eeing work.

June 2012 Arno Pauly
Robert Rettinger
Klaus Weihrauch
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A Hierarchy of the
Forced Retracing Computable Curves

(Abstract)

David Abdul-Malak1, Megan Gillespie1, and Xizhong Zheng1,2?

1 Department of Computer Science and Mathematics
Arcadia University, Glenside, PA 19038, USA

{MGillespie,DAbdulMalak, ZhengX}@arcadia.edu
2 Departments of Mathematics and Computer Science

Jiangsu University, Zhenjiang 212013, China
xzhx@ujs.edu.cn

A curve can be used to record the path of a particle motion. Therefore, we can define a curve
as the image of a continuous function defined on, say, the unit interval. In this case, the continuous
function is called a parametrization of the curve. However, under this definition, a curve can fill
even a square (e.g., the Peano curve) which contradicts our intuition about a curve. If we consider
only the curve of a finite length (so-called rectifiable curve), this cannot happen. On the other hand,
if a particle motion is algorithmically determined, like the movement of a robot on the plane, its
path is naturally called computable. Thus, we will call a curve computable if it has a computable
parametrization f : [0, 1]→ R2. Where f : [0, 1]→ R2 is computable means that f = (fx, fy) and
both fx and fy are computable real functions.

If a curve does not intersect itself, i.e., it has an injective parametrization, then the curve is
called simple. Surprisingly, Gu, Lutz and Mayordomo prove in [1, 2] that there exists a computable
simple curve which does not have injective computable parametrization. In fact, they construct a
curve Γ which is rectifiable, simple and even computable in polynomial time. But, any computable
parametrization of Γ must retrace some part of the curve unboundedly many times. This means
that any computable parametrization of Γ is forced to retrace the curve although Γ is simple and
hence has a (non-computable) injective parametrization. The cures of this property will be called
forced retracing curves.

In this paper, we investigate further how the number of retracing allowed by a computable
parametrization could be related to the complexity of a forced retracing computable curve. To this
end we first introduce the notion of n-retracing curves.

Definition 1. Let C ⊆ R2 be a rectifiable simple computable curve and let n be a natural number.

1. A parametrization f : [0, 1] → R2 of C has n-retracing if there are at most 2n + 1 disjoint
intervals [ai, bi] ⊆ [0, 1] (1 ≤ i ≤ 2n+ 1) such that f [ai, bi] = f [a1, b1] for all i.

2. The curve C is called n-retracing if C has a computable parametrization of n-retracing. C is
called ∗-retracing if it is n-retracing for some n.

The classes of all n-retracing curves and ∗-retracing curves are denoted by RCn and RC∗,
respectively. Then we have RC∗ =

⋃
n∈NRCn. By definition, if C is a 0-retracing curve, then it

has a computable parametrization that is injective or monotone. In this case we call C mono-
tonically computable, or M -computable. Thus, M -computable curves can be parametrized without
retracing. The class of all M -computable curves is denoted by MC. On the other hand, a com-
putable curve, like the curve Γ constructed in [1, 2], can have up to unboundedly many retracing.
Let EC (effectively computable) be the class of all computable rectifiable simple cure. Then the
following relations between the curve classes introduced so far, for all n, follow from the definition
immediately.

MC = RC0 ⊆ RCn ⊆ RCn+1 ⊆ RC∗ ⊆ EC.
? Corresponding author. email: ZhengX@Arcadia.edu. He is supported by NSFC 61070231
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The result of [1, 2] shows actually that RC∗ 6= EC. In this paper we will show that all other
inclusion relations are also proper. Therefore there is an infinite hierarchy of all retracing curves.
As the first step, we prove that there is a computable curve which is forced to retrace once.

Theorem 1. There is a rectifiable simple computable 1-retracing curve C1 which is not monoton-
ically computable.

Proof. (Sketch) The curve C1 is constructed as the limit of an effectively convergent computable
sequence (Ps) of rational polygons. The main idea is to code the halting problem K into the curve
C1 as shown in Figure 1.

t0 = 0 tm

tm+1

m ∈ K

tn tn+1

n /∈ K

tn = 1

Fig. 1. Graph of the curve C

Fix a computable enumeration (Ks) of K, which is a computable sequence of finite sets such
that K = limKs and Ks ⊆ Ks+1. The unit interval [0, 1] is divided into infinitely many subintervals
In := [tn, tn+1], where tn = 1−2−n. We define Ps as a rational polygon which encode the finite set
Ks in the above way and let fs be a computable 1-retracing parametrization of Ps such that, for
any n, if n /∈ Ks, then Ps is a line segment ln connecting (tn, 0) and (tn+1, 0), and the function fs
retraces the segment ln once evenly (passing through the line three times). Otherwise, if n ∈ Ks,
then Ps has a zig-zag on the interval In and fs passes through this part only once. The height of
the zig-zag should be small enough go guarantee that the sequence (fs) converges effectively. This
can imply that C1 is computable, simple and rectifiable as well.

Apparently C1 is an 1-retracing computable curve. If, by contradiction, g is a computable injec-
tive parametrization of C1, then we can show that n ∈ K iff there are three disjoint intervals [ui, vi]
such that g[ui, vi] pass the line x = mn for i = 1, 2, 3, where mn = (tn + tn+1)/2. Because the later
can be determined effectively by the computability of g, this contracts to the non-computability
of K. Therefore, g cannot be injective.

By similar constructions, we can further prove the following theorem.

Theorem 2. 1. For any n, there is an (n+1)-retracing computable curve which is not n-retracing.
2. There is a computable curve which is not n-retracing for all n.

The second item of Theorem 2 is actually proved in [1, 2] where the constructed curve Γ is even
polynomial time computable and has continuous second order derivative. Actually, if we replace
the polygons in our constructions by some smooth and polynomial time computable cures, we can
also make the curves constructed above to be polynomial time computable and smooth.

References
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Locating Ax, where A is a subspace of B(H)

Douglas S. Bridges

Let H be a Hilbert space, B(H) the space of bounded operators on H, and A a
linear subspace of B(H). For each x ∈ H write

Ax ≡ {Ax : A ∈ A} ,

and, if it exists, denote the projection of H onto the closure Ax of Ax by [Ax].
Projections of this type play a very big part in the classical theory of operator
algebras, in which context A is normally a subalgebra of B(H). However, in the
Bishop-style constructive setting of this paper, we cannot even guarantee that [Ax]
exists. Our aim is to give sufficient conditions on A and x under which [Ax] exists,
or, equivalently, the set Ax is located, in the sense that

ρ (v,Ax) ≡ inf {‖v −Ax‖ : A ∈ A}

exists.
We need some background on operator topologies. Specifically, in addition to

the standard uniform topology on B(H), we need

B the strong operator topology: the weakest topology on B(H) with respect
to which the mapping T  Tx is continuous for all x ∈ H;

B the weak operator topology: the weakest topology on B(H) with respect
to which the mapping T  〈Tx, y〉 is continuous for all x, y ∈ H

These topologies are induced, respectively, by the seminorms of the form T  ‖Tx‖
with x ∈ H, and T  |〈Tx, y〉| with x, y ∈ H. The unit ball

B1(H) ≡ {T ∈ B(H) : ‖T‖ 6 1}

of B(H) is classically weak-operator compact, but constructively the most we can
prove is that it is weak-operator totally bounded. The evidence so far suggests that
in order to make progress when dealing constructively with a subspace or subalgebra
A of B(H), it makes sense to add the weak-operator total boundedness of

A1 ≡ A ∩ B1(H)

to whatever other hypothesis we are making; in particular, it is known that A1

is located in the strong operator topology—and hence A1x is located for each
x ∈ H—if and only if it is weak-operator totally bounded.
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Recall that the metric complement of a subset S of a metric space X is the set
−S of those elements of X that are bounded away from X. When Y is a subspace
of X, y ∈ Y , and S ⊂ Y , we define

ρY (y,−S) ≡ inf {ρ (y, z) : z ∈ Y ∩ −S}

if that infimum exists.
Our main result is

Theorem 1 Let A be a uniformly closed subspace of B(H) such that A1 is weak-
operator totally bounded, and let x be a point of H such that Ax is closed
and ρAx (0,−A1x) exists. Then the projection [Ax] exists.

Before proving this theorem, we discuss some general results about the located-
ness of sets like Ax, and we derive the following generalisation of the open mapping
theorem, which leads to the proof of Theorem 1.

Theorem 2 Let X be a Banach space,and C a located, bounded, balanced, and

superconvex subset of X such that ρ (0,−C) exists and X =
⋃

n>1

nC. Then there

exists r > 0 such that B (0, r) ⊂ C.

Note that a bounded subset C of a Banach space X superconvex if for each se-
quence (xn)n>1 in C and each sequence (λn)n>1 of nonnegative numbers such that∑∞

n=1 λn converges to 1 and the series
∑∞

n=1 λnxn converges, we have
∑∞

n=1 λnxn ∈
C. In that case, C is clearly convex.

Finally, we show, by a Brouwerian example, that the existence of ρAx (0,−A1x)
cannot be dropped from the hypotheses of Theorem 1.

Acknowledgement. This research was partially done when the author was a
visiting fellow at the Isaac Newton Institute for the Mathematical Sciences, in the
programme Semantics & Syntax: A Legacy of Alan Turing.
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The strength of Ramsey’s Theorem for coloring relatively large

sets

Lorenzo Carlucci
Dipartimento di Informatica, University of Rome I “La Sapienza”

Rome, Italy
carlucci@di.uniroma1.it

Konrad Zdanowski
University of Cardinal Stefan Wyszyński

Warsaw, Poland
k.zdanowski@uksw.edu.pl

Abstract

We characterize the computational content and the proof-theoretic strength of an infinite
Ramsey-type theorem due to Pudlàk and Rödl [6] and independently to Farmaki [2]. The
theorem we analyze is as follows. For every infinite subset M of N, for every coloring C
of the exactly large subsets of M in two colors, there exists and infinite subset L of M
such that C is constant on all exactly large subsets of L. An exactly large set is a set
X ⊂ N such that card(X) = min(X) + 1. The notion of large set comes from the famous
independence result for Peano Arithmetic due to Paris and Harrington [5]. The theorem
can be equivalently formulated in terms of thin Schreier families [7] from Banach Space
Theory (see, e.g., [1]). We prove that — over Computable Mathematics — this theorem
is equivalent to closure under the ωth Turing jump. Natural combinatorial theorems at
this level of complexity are rare. We give a complete characterization of the theorem from
the point of view of Computability Theory and Reverse Mathematics. This nicely extends
the current knowledge about the strength of Ramsey’s Theorem [4, 8]. We conjecture that
analogous results hold for generalizations of the theorem to larger ordinals.
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Conservatively Approximable Functions

Douglas Cenzer, University of Florida,
Gainesville, Florida 32611-8105, cenzer@math.ufl.edu

Keywords: symbolic dynamics, computable analysis, computability, effec-
tively closed sets

An effectively closed subset (or Π0
1 class) P of the Cantor space 2N is the

set of infinite paths through some computable tree T . If the tree has no dead
ends, then P is said to be decidable or computable. It is well known that the
image of computable function on the Cantor space is a decidable Π0

1 class. But
most interesting Π0

1 classes are not decidable. Thus we consider the problem
of identifying a weaker notion of computable real functions which can have
arbitrary Π0

1 classes as the image.
A related problem arises in the study of effective dynamical systems. A Π0

1

class P is said to be a subshift if it is closed under the shift operator σ, defined
by σ(X) = (X(1), X(2), . . . ). The iteration of a computable function F on 2N

create a dynamical system and to the Π0
1 subshift of itineraries of F as follows.

For each X, the sequence (X,F (X), F (F (X)), . . . ) is the trajectory of X. Given
a fixed partition U0, . . . , Uk−1 of 2N into clopen sets, the itinerary It(X) of a
point X is the sequence (a0, a1, . . . ) ∈ kN where an = i iff Fn(X) ∈ Ui. Let
It[F ] = {It(X) : X ∈ 2N}. Note that It[F ] will be a closed set. We observe
that, for each point X with itinerary (a0, a1, . . . ), the point F (X) has itinerary
(a1, a2, . . . ). It follows that It[F ] is a subshift.

Computable subshifts and the connection with effective symbolic dynamics
were investigated by Cenzer, Dashti and King [1]. It was shown that for any
computably continuous function F : 2N → 2N, It[F ] is a decidable Π0

1 class
and, conversely, any decidable Π0

1 subshift P is It[F ] for some computable map
F . In this paper, it is also shown that there exist Π0

1 subshifts which have no
computable elements and are therefore not decidable. Thus we consider again
the problem of identifying a notion of weak computability which will produce
arbitrary Π0

1 subshifts.
A computable function F on 2N may be represented by a function f on

finite strings so that F (X) is the limit of the sequence f(x � n). Here f has the
property that whenever a string v extends a string u, then f(v) also extends
f(u). We introduce the notion of a conservatively approximable function in
which the representation has the weaker property that f(u∗ i) need only extend
f(w) for some string w with the same length as u. It is proved that the image
of a conservatively approximable function is always a Π0

1 class and that every
Π0

1 class P is the image of some conservatively approximable function.
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We also consider the set of itineraries of conservatively approximable func-
tions. We show that every Π0

1 subshift is the set of itineraries of some con-
servatively approximable function and give conditions under which the set of
itineraries of a conservatively approximable function will be a Π0

1 class.
The notions of effectively closed sets and of computable type two functions

for the real line and for other spaces have been studied intensively by Weihrach
[2] and many others in the computable analylsis community. We also consider
the notion of conservatively approximable functions on the real interval [0, 1].

References

[1] D. Cenzer, A. Dashti and J.L.F. King, Computable Symbolic Dynamics,
Math. Logic Quarterly 54 (2008), 524–533.
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Computable Probability Theory

and

Stochastic Processes

Pieter Collins
Department of Knowledge Engineering, Maastricht University

Postbus 616, 6200 MD Maastricht, The Netherlands
pieter.collins@maastrichtuniversity.nl

Abstract

The aim of this paper is to present an elementary computable theory
of probability, random variables and stochastic processes. The probability
theory is baed on existing approaches using valuations and lower integrals.
Various approaches to random variables are discussed, including the ap-
proach based on completions in a Polish space. We apply the theory to
the study of stochastic dynamical systems in discrete-time, and give a
brief exposition of the Wiener process as a foundation for stochastic dif-
ferential equations. The theory is based within the framework of type-two
effectivity, so has an explicit direct link with Turing computation, and is
expressed in a system of computable types and operations, so has a clean
mathematical description.
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A Strong Turing Reduction for Additive BSS RAM’s

Christine Gaßner

Ernst-Moritz-Arndt-Universität Greifswald, Germany

gassnerc@uni-greifswald.de

The Turing machine and several types of register machines are well-known

models of computation that are used for describing the complexity of problems

solved by computers. Whereas a Turing machine only processes a finite number

of symbols, most register machines operate on real numbers, and in contrast

to classical complexity theory based on the Turing model, the study of register

machines leads in general to a non-uniform complexity theory. A combination

of such models provides abstract machine models of computation over algebraic

structures including the BSS model of computation over the reals. The resulting

complexity theory is uniform, but the new model causes new questions and

the reducibility relations need to be re-examined. Here we study some aspects

concerning the Turing reduction related to additive and linear BSS RAM’s over

structures such as IR≤add = (IR; IR; +,−;≤), IR=
add = (IR; IR; +,−; =), and IR≤lin =

(IR; 1; +,−, (ϕc)c∈IR;≤) with ϕc(x) = cx for all x ∈ IR. The machines can be

defined as in [Gaßner 2008] and can be assigned to classes as follows. The additive

machines in Madd and M=
add allow computations by means of the operations and

relations in IR≤add and IR=
add, respectively, and can execute the instruction Zj := c

for any constant c ∈ IR. The machines in M1
add, M1,=

add, and Mlin use only the

constant 1. The classes RECadd,REC=
add, . . . contain the problems recognizable

(semi-decidable) by a machine in Madd,M
=
add, . . ., respectively. DECadd, . . . are

the corresponding classes of decidable problems. In contrast to many models of

computation over the integers the inclusions REC1,=
add ⊂ REC1

add ⊂ RECadd ⊂
REClin and DEC1,=

add ⊂ DEC1
add ⊂ DECadd ⊂ DEClin are strict.

The Turing reduction over the reals is defined by machines using an oracle

O ⊆ IR∞. The strong Turing reduction with respect to the additive BSS model

(here denoted by �) can be performed by additive BSS oracle machines with the

constant 1 and the order test, the weak Turing reduction (denoted by �r1,...,rk)

refers here to additive BSS oracle machines with real constants r1, . . . , rk and the

order test. In order to point out common features and differences between the

Turing machine, the additive BSS machines without irrational constants, and

other BSS RAM’s, we combine construction methods of the classical recursion

theory with techniques for proving lower bounds of algebraic complexity, give

some examples for different unsolvability degrees with respect to the strong

Turing reduction, present hierarchies of decision problems below several halting

9



problems IHadd, IH1
add, and IH1,=

add for the additive machines defined by

IHadd =df

⋃
n≥1{(n .x . code(M)) | x ∈ IRn & M∈ Madd & M(x) ↓},

and so on, and investigate a weak Turing degree defined by the complete semi-

decidable problem IHadd. In particular, we present the following results.

1. For Ln = {(x1, . . . , xn) ∈ IRn | (∃(q0, . . . , qn−1) ∈ Qn)(q0+
∑n−1

i=1 qixi = xn)}
there are problems A, IK ⊆ IN with

⋃
i≥1Li �6

⋃
i∈A Li �6

⋃
i∈IK Li � IH1,=

add.

2. The set Aalg of algebraic numbers and IHadd define incomparable Turing de-

grees with respect to additive machines, and the same holds for Aalg and IH1,=
add.

3. Let p1 = 2, p2 = 3, . . . be an enumeration of the prime numbers and let K
be a machine recognizing {i} × (IR \ {√pi}) by checking, for any input (i, x),

the condition ((x < r
q and r2

q2 < pi) or (x > r
q and r2

q2 > pi)) for all enumerated

(r, q) ∈ IN× IN+ until the condition is satisfied. Then, for

IHi =df IH1,=
add ∪

⋃
j≤i{(2 . (j, x) . code(K)) | x ∈ IR \ {√pj}} ⊆ IH1

add

we get IH1,=
add �6 IH1 �6 · · · �6 IHk �6

⋃
i≥1 IHi ≡

⋃
i∈A IHi ≡

⋃
i∈IK IHi � IH1

add

where k ≥ 2.

4. For any oracle O ⊆ IR∞, let M1
add(O) be the class of all additive oracle

BSS RAM’s using only the constant 1, the order test, and O. For decomposing

the weak Turing degree IHadd we use a sequence (ri)i≥1 of real numbers where

r1 = 1 and, for any i ≥ 2, ri is the representation of a special halting prob-

lem IHspec(M
1
add(IH

r1,...,ri−1

add )) ⊆ IN of the oracle machines in M1
add(IH

r1,...,ri−1

add ).

code(i)(M) is the sequence of the representations of the single symbols of the

program of M where the real numbers r1, r2, . . . , ri are encoded by the binary

representations of their indices and any other real constant in IR\{r1, r2, . . . , ri}
is encoded by itself. In this way we get

IH
(i)
add =df

⋃
n≥1{(n .x . code(i)(M)) | x ∈ IRn & M∈ Madd & M(x) ↓}.

Moreover, let Mr1,...,ri
add be the set of the additive BSS machines using only the

constants r1, . . . , ri and let

IHr1,...,ri
add =df

⋃
n≥1{(n .x . code(i)(M)) ∈ IH

(i)
add | M ∈ Mr1,...,ri

add }.

Then, IHadd ≡ IHr1
add �6 · · · �6 IH

r1,...,ri−1

add �6 IH
(i−1)
add ≡ri IH

(i)
add ≡r1,...,ri IHadd

holds for any i ≥ 3. Note that ri+1 is transcendent over Q(r1, . . . , ri). Conse-

quently, we can take theses constants in proofs if we need a sequence of real tran-

scendental numbers τ1, τ2, . . . such that τi+1 is transcendent over Q(τ1, . . . , τi).

I would like to thank the participants of the meeting ”Real Computation and

BSS Complexity” in Greifswald for the discussion.

[Gaßner 2008] Gaßner, C.: “A hierarchy below the halting problem for additive ma-

chines”; Theory of Computer Systems 43 (2008) (3), 464–470.
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Computing Real Functions with Rudimentary
Operators

Ivan Georgiev

Burgas Prof. Assen Zlatarov University,
Faculty of Natural Sciences,

Prof. Yakimov Str. 1, 8010, Burgas, Bulgaria,
ivandg@yahoo.com

Abstract. The class of general recursive operators can be defined by an
inductive definition in the same spirit as the inductive definition of the
total recursive functions. We narrow the class of total recursive functions
to its small subclass M2 and define the corresponding class RO of rudi-
mentary operators. We also define the class MSO of M2-substitutional
operators which turns out to be a proper subclass of RO. The aim of this
paper is to apply a general characterization theorem of D. Skordev in [2]
to obtain that the two classes MSO and RO have equivalent computa-
tional power for computing real functions in the sense of A. Grzegorczyk
from [1] and exactly the same power possesses an approach of K. Tent
and M. Ziegler from [6], which avoids the use of infinitistic names of real
numbers.

Keywords: limited minimum operation, M2, rudimentary operator,
M2-substitutional operator, computable real function
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HYPERBOLIC SYSTEMS WITH NON-COMPUTABLE BASINS

OF ATTRACTION

D.S. GRAÇA AND N. ZHONG

Abstract. Dynamical systems are fascinating mathematical objects. They

can be defined with simple rules and yet their “time-evolution” can be highly
complex and difficult to describe analytically. A particular challenge is the

problem of characterizing basins of attraction. In recent years, as fast com-

puters have become available, much effort has been devoted to developing al-
gorithms for estimating basins of attraction of various attractors. It therefore

becomes useful to know whether or not these sets can actually be generated

by computers.
It is well known that for hyperbolic rational functions, there are (polynomial-

time) algorithms for computing basins of attraction and their complements
(Julia sets) with arbitrary precision; in other words, basins of attraction and

Julia sets of hyperbolic rational functions are (polynomial-time) computable.

However, the question of computability remains open for (analytic) non-
rational systems. In this paper we show that:

Main Theorem. There is an analytic and computable dynamical system
with a hyperbolic sink s such that the basin of attraction of s is not computable.

Thus our result implies that no algorithmic characterization exists, in gen-
eral, for a given basin of attraction.

In the case of discrete-time systems, we prove the result by encoding a well-

known non-decidable problem into the basin of attraction of s. In the case of
continuous-time systems, we prove the result by embedding a discrete-time

system with a non-computable basin of attraction into a continuous-time sys-
tem. The standard suspension method (see V. I. Arnold and A. Avez Ergodic

problems of classical mechanics, W.A. Benjamin, 1968, S. Smale Differentiable

dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747 – 817) for embed-
ding a discrete-time system into a continuous-time system is not sufficient for

our case; we instead develop a new method.

CEDMES/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro & SQIG - In-
stituto de Telecomunicações, Lisboa, Portugal

E-mail address: dgraca@ualg.pt
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Dimension spectra of random subfractals of self-similar fractals

Xiaoyang Gu∗ Jack H. Lutz† Elvira Mayordomo‡ § ¶ P. Moser‖ §

Abstract

The (constructive Hausdorff) dimension of a point x in Euclidean space is the algorithmic
information density of x. Roughly speaking, this is the least real number dim(x) such that
r×dim(x) bits suffices to specify x on a general-purpose computer with arbitrarily high precisions
2−r. The dimension spectrum of a set X in Euclidean space is the subset of [0, n] consisting of
the dimensions of all points in X.

The dimensions of points have been shown to be geometrically meaningful (Lutz 2003, Hitch-
cock 2003), and the dimensions of points in self-similar fractals have been completely analyzed
(Lutz and Mayordomo 2008). Here we begin the more challenging task of analyzing the dimen-
sions of points in random fractals. We focus on fractals that are randomly selected subfractals
of a given self-similar fractal. We formulate the specification of a point in such a subfractal as
the outcome of an infinite two-player game between a selector that selects the subfractal and a
coder that selects a point within the subfractal. Our selectors are algorithmically random with
respect to various probability measures, so our selector-coder games are, from the coder’s point
of view, games against nature.

We determine the dimension spectra of a wide class of such randomly selected subfractals. We
show that each such fractal has a dimension spectrum that is a closed interval whose endpoints
can be computed or approximated from the parameters of the fractal. In general, the maximum
of the spectrum is determined by the degree to which the coder can reinforce the randomness
in the selector, while the minimum is determined by the degree to which the coder can cancel
randomness in the selector. This constructive and destructive interference between the players’
randomnesses is somewhat subtle, even in the simplest cases. Our proof techniques include van
Lambalgen’s theorem on independent random sequences, measure preserving transformations,
an application of network flow theory, a Kolmogorov complexity lower bound argument, and a
nonconstructive proof that this bound is tight.
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Computing a Solution of Feigenbaum’s

Functional Equation in Polynomial Time

Peter Hertling, Christoph Spandl
Computer Science Department,
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Abstract

Independently, Feigenbaum [2] and Großmann and Thomae [3], observed
that the behaviour of the points of bifurcations of certain parameterized classes
of dynamical systems on an interval obeys certain universal laws that are gov-
erned by constants which are now called Feigenbaum constants. For detailed
presentations of these notions the reader is referred to [1]. In particular the
so-called first Feigenbaum constant α = −2.50290787 . . . is the inverse 1/g(1) of
the value g(1) at 1 of a solution g of Feigenbaum’s functional equation which was
explicitly constructed by Lanford [5]. We show that this solution function g is
a polynomial time computable function. This implies that the first Feigenbaum
constant is a polynomial time computable number.

Which real numbers are computable? This question was one of the motiva-
tions for Alan Turing to write his famous papers [6, 7], in which he developed
the notion of a Turing machine and gave a definition of computable real num-
bers. A real number c is called computable, if there is an algorithm (a Turing
machine) which, given an arbitrary n ∈ N computes a rational number qn sat-
isfying |c − qn| < 2−n. A real number c is called polynomial time computable
[4] if there are a Turing machine M and a polynomial p with coefficients in N
such that M , given the string 1n for any n ∈ N, computes in at most p(n) steps
a binary string a = am . . . a0 (where m is an arbitrary natural number) and a
binary string b = b1 . . . bn such that

|c− a.b| < 2−n

where a.b = am . . . a0.b1 . . . bn is a dyadic rational number. Finally, a sequence
(ck)k∈N of real numbers is called polynomial time computable if there are a
Turing machine M and a two-variate polynomial p with coefficients in N such
that M , given 1k01n for k, n ∈ N, computes in at most p(k, n) steps a binary
string a = am . . . a0 (where m is an arbitrary natural number) and a binary
string b = b1 . . . bn such that

|ck − a.b| < 2−n.
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In order to formulate our main result precisely we need to introduce some
terminology. We closely follow Lanford [5]. In fact, this paper by Lanford is the
basis of our analysis.

Let M be the set of all continuously differentiable functions f : [−1, 1] →
[−1, 1] satisfying the following conditions:

1. f(0) = 1,

2. x · f ′(x) < 0 for x 6= 0, i.e., f is strictly increasing on [−1, 0] and strictly
decreasing on [0, 1],

3. f(−x) = f(x) for all x, i.e., f is even.

Furthermore, let D ⊆M be the set of all functions in M satisfying additionally
the following conditions:

1. 0 < −f(1),

2. −f(1) < f(f(1)),

3. f(f(f(1))) ≤ −f(1).

It is easy to check that for any function f ∈ D, the function Tf , defined by

Tf(x) :=
1

f(1)
· f(f(f(1) · x))

is an element of M . Lanford [5] showed the following result.

Theorem 0.1 ([5, Theorem 1 and Prop. 2]) There exists a function g, an-
alytic and even on the set {z ∈ C : |z| <

√
8} and with real values on real

numbers, whose restriction to [−1, 1] is an element of D and a fixed point of the
operator T .

The so-called first Feigenbaum constant α is given by α = 1/g(1). We show:

Theorem 0.2 1. The sequence of Taylor coefficients around 0 of this ana-
lytic function g is a polynomial time computable sequence of real numbers.

2. The number α = 1/g(1) is a polynomial time computable real number.

Our proof is based on Lanford’s paper [5].
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Computability of semi-computable compact

manifolds

Zvonko Iljazović

A closed subset of Euclidean space Rn is said to be computable if it can be
effectively approximated by a finite set of points with rational coordinates with
arbitrary precision on an arbitrary bounded region of Rn. A closed subset of
Rn is said to be co-computably enumerable (co-c.e.) if its complement can be
effectively covered by open balls. If S is a computable set, then S is co-c.e. On
the other hand, a co-c.e. set need not be computable, even if it is very simple
from the topological viewpoint: in each Rn we can find two points such that the
segment determined by these points is co-c.e., but not computable. However, it
is known that the implication

S co-computably enumerable ⇒ S computable (1)

holds if S is a topological sphere, i.e. if S is homeomorphic to the unit sphere
in some Rm. This result is valid not just in Euclidean space, but in every
computable metric space which is locally computable. We now show that the
implication (1) holds not just for topological spheres, but for all compact mani-
folds. Actually, we show that in every computable metric space the implication

S semi-computable ⇒ S computable (2)

holds if S is a compact manifold. That a set S is semi-computable means that
we can effectively enumerate all rational open sets which cover S. In Euclidean
space (and in each locally computable computable metric space) a compact set
is co-c.e. if and only if it is semi-computable.

In order to prove the main result, we examine the notion of computability up
to some set. The idea is to show that in each semi-computable compact manifold
S each point has a neighborhood which is computable up to its complement
and then, using compactness of S, to conclude that S is computable as a finite
union of such neighborhoods. The same idea can be used to show a more general
result: if S is a semi-computable compact manifold with boundary, then S is
computable if its boundary ∂S is computable (or semi-computable). This is a
generalization of the following known result: is S is a co-c.e. cell with co-c.e.
boundary sphere, then S is computable.
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Computational Complexity of

Ordinary Differential Equations

Akitoshi Kawamura
University of Tokyo

How complex can the solution be to an ordinary differential equation given
by a polynomial-time computable function? This question can be given a nat-
ural and precise sense in computational complexity theory by refining the stan-
dard definitions in Computable Analysis. In this talk, I will start with the
definitions of polynomial-time computability of real functions and operators,
and then present several results about the complexity of ordinary differential
equations. It turns out that imposing stronger conditions on the input func-
tion (such as being Lipschitz continuous, smooth, analytic) makes the solution
computationally simpler.
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Uniform Polytime Computable Operators
on Univariate Real Analytic Functions

A. Kawamura1, N. Müller2, C. Rösnick3, and M. Ziegler3

1 University of Tokyo, kawamura@is.s.u-tokyo.ac.jp
2 Universität Trier, mueller@uni-trier.de

3 TU Darmstadt, {roesnick,ziegler}@mathematik.tu-darmstadt.de

Recursive analysis as initiated by Turing (1937) explores the in-/computability of problems
involving real numbers and functions by approximation up to prescribable absolute error 2−n.
Weihrauch’s Type-2 Theory of Effectivity (TTE) extends this to mappings from/to the Cantor
space of infinite binary strings encoding continuous universes in terms of so-called representations.
Refining mere computability, classical complexity theory has successfully been transferred from the
discrete to the real realm; see for instance the works of Harvey Friedman, Ker-I Ko, and Norbert
Th. Müller in the 1980ies or, more recently and exemplarily, [4, 1]. However the common setting
only covers real numbers x and (continuous) real functions f ; operators O could be investigated
merely in the non-uniform sense of mapping polytime computable functions to polytime ones —
yielding strong lower bounds but weakly meaningful upper bounds for actual implementations of
exact real number computation like iRRAM. As a major obstacle towards a uniform complexity
theory for operators, the computable evaluation of a ‘steep’ function f : x 7→ f(x) requires more
precision on x to approximate y = f(x) than a ‘shallow’ one. More precisely as quantitative
refinement of the sometimes so-called Main Theorem of recursive analysis, the (optimal) modulus
of continuity of f constitutes a lower bound on its complexity — hence the evaluation operator
cannot be computable on entire C[0, 1] in time bounded by the output precision n only.

In [2] one of the authors and his advisor have proposed and exemplified a structural complexity
theory for operators O from/to continuous functions f on Cantor space — given by approximations
as so-called regular string functions, that is, mappings ϕ :⊆ {0, 1}∗ → {0, 1}∗ whose output length
|ϕ(~σ)| depends only, and monotonically, on the input length |~σ|. They consider Turing machines
converting such ϕ (given as a function oracle) and ~τ ∈ {0, 1}∗ to O

(
ϕ
)
(~τ) in time uniformly

bounded by a second-order polynomial in the sense of Kapron&Cook (1996) depending on both
|~τ | and |ϕ|. For real operators, a reasonable (second-order) representation of functions f ∈ C[0, 1]
as regular string functions ϕ amounts to |ϕ| upper bounding f ’s modulus of continuity and renders
evaluation (second-order) polynomial-time computable.

We further flesh out this theory by devising and comparing second-order representations and
investigating the computational complexity of common (possibly multivalued) operators in anal-
ysis. Specifically, two rather different (multi-)representations are suggested for the space

{
(U,C, f |C) : U ⊆ C open, C ⊆ U compact convex, f : U → C analytic

}

of functions analytic on (a complex neighbourhood of) a compact convex set and shown to be
polytime equivalent. We then present second-order polytime algorithms computing some of the
operators on this space that in [3] had been shown non-uniformly polytime computable.
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A Testable Abstract Data Type of

Outer and Inner Real Approximations

Michal Konečný

We explore the foundations of an approach to reliable real number program-
ming that supports denotational exact real semantics and is also efficient to
execute as it is similar to iRRAM. Instead of building a minimalistic foundation
for real number computation as do RealPCF or TTE, we provide a suitable ab-
straction of safely rounded interval arithmetic by formalising its key properties.
These properties define an abstract data type (ADT) of real number approxi-
mations forming a family of approximate rounded fields that converges to the
field of real numbers.

The ADT has a denotational semantics based on a continuous lattice within
which it is easy to identify the field of real numbers, providing an alternative
constructive definition of the real numbers. Thus one can build semantically
transparent exact real algorithms over the ADT.

This ADT can serve as an interface that decouples exact real number algo-
rithms of the iRRAM style from the underlying interval arithmetic, providing
a formal specification of rounded interval arithmetic for verification and pre-
venting any inappropriate use of interval arithmetic that violates its use as real
number approximations, such as accessing the endpoints directly.

Moreover, the ADT is carefully constructed so that all the properties are
testable using QuickCheck. Being able to “QuickCheck” an implementation of
real number arithmetic against a complete axiomatisation of the real numbers
is very valuable, whether or not formal verification is performed. QuickCheck
provides counter-examples when a property violation is detected, speeding up
localisation of mistakes. In an absence of formal verification, using QuickCheck
with our ADT is a cheap way to gain a very high level of confidence in the
reliability of an implementation of interval arithmetic.

A variant of this approach has been adopted in the AERN library, where
both interval arithmetic and polynomial interval arithmetic implement a real
number ADT. The polynomial arithmetic provides a data type of continuous
real functions with real operations applied point-wise over the whole domain of
the functions.

Figure 1 outlines, using an informal UML-like notation, the main concepts
covered in this work and other related concepts. The ADT mentioned above
corresponds to the box “in/out-rounded approximate reals” in the figure.

Note that in our approach we need to consider both outer- and inner-rounded
interval operators whereas iRRAM uses only the outer-rounded operators. We
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Figure 1: The main concepts covered in this paper and other related concepts.

require inner-rounded operators to be able to express rounded versions of prop-
erties such as commutativity and associativity. Also, the difference between a
result obtained with outer-rounded operations and a result obtained using inner-
rounded operations gives us a tangible measure of imprecision without having to
refer to the exact result (i.e. result that would be obtained using exact interval
operations).
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A CONSTRUCTIVE VIEW OF CONTINUITY PRINCIPLES:

ABSTRACT

ROBERT S. LUBARSKY

In constructive mathematics, distinctions can be drawn that cannot be made
classically. This talk will examine principles, many fairly recent, that have come up
within constructivism related to continuity, and their variants, with an eye toward
open questions.

The first set of topics has to do with the boundedness principle BD-N [7]. A set of
natural number A is said to be pseudo-bounded if every sequence (an) of members
of A is eventually dominated by the identity function. BD-N is the assertion that
every inhabited countable pseudo-bounded set is bounded. (Recall that a set is
countable if it is the range of a function with domain the natural numbers. So it
might not happen that every set of natural numbers is countable, as there may
be some sets that just cannot be enumerated.) Over some basic theory of sets or
of analysis, with Countable Choice, BD-N is equivalent to the continuity (that is,
standard ε − δ continuity) of every sequentially continuous map from a separable
metric space to a metric space. Arguably BD-N is quite subtle, and hence identified
only so late, because it is true in all the major schools of mathematics: Brouwer’s
intuitionism, Russian computably-based constructivism, and classical mathematics.
However, it is independent of analysis and set theory [8, 9].

As weak as BD-N is, there have recently been identified principles that are strictly
weaker, yet still not outright provable. One is the closure of anti-Specker spaces
under Cartesian product [2, 5]. An anti-Specker space is one that does not allow for
the existence of anything like the well-known Specker sequence from computable
analysis. Since this is a form of compactness, one might well expect closure under
product. Another is the Riemann Permutation Theorem [3, 4], a version of the
introductory analysis theorem that any conditionally convergent sequence can be
rearranged to converge to any desired real number. The last one we consider is that
every partially Cauchy sequence is Cauchy, where a sequence is partially Cauchy if
the diameters of arbitrarily long albeit finite sub-sequences go to 0. We will discuss
the known independence proofs of these principles from standard base theories, and
of BD-N from them, as well as the questions we would like to see addressed next
[10].

The second set of topics is Brouwer’s famous Fan Theorem and its topical vari-
ants. The Fan Theorem is the classical contrapositive of König’s Lemma. The
latter states that every infinite, finitely branching tree has an infinite branch, the
former that every binary tree (i.e. subset of 2<ω) with no infinite branch is finite.
More commonly put, a bar B is defined to be a set of nodes (of 2<ω) such that
every infinite path contains a node from B. The Fan Theorem states that every
bar is uniform. This could be viewed as the compactness of Cantor space.

Continuous functions from a compact metric space are uniformly continuous,
so one would expect the Fan Theorem to yield some kind of implication from
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continuity to uniform continuity. This is indeed the case, in a very strong sense:
some weakenings of the Fan Theorem are equivalent to the step from continuity to
uniform continuity over certain spaces [1, 6]. These weakenings consist of restricting
the relevant bars to a limited collection, namely to bars that are easily definable.
As with BD-N, we will discuss the models showing non-implications among these
variants of Fan [11], as well as the questions we would like to see addressed.
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Effective Dimension in Euclidean space

Elvira Mayordomo∗ †

Abstract

Effective dimension was introduced by Lutz [3,4] in order to quantitatively analyze complex-
ity classes. The resulting concepts of effective dimension have turned out to be robust, since
they have been shown to admit several equivalent definitions that relate them to well-studied
concepts in computation, and they have proven very fruitful in investigating not only the struc-
ture of complexity classes but also in the modeling and analysis of sequence information. For a
survey on the applications of effective dimension to the study of complexity classes see [2] and
for the Information Theory connections see [5,1].

In this talk, we will survey the most recent developments in effective dimension, those that
are back in fractal geometry. We will present the use of effective dimension in Euclidean space,
its main robustness properties and all known applications in fractal geometry, very related to
the new concept of “dimension of a point”.
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COMPUTABLY CATEGORICAL SPACES

ALEXANDER G. MELNIKOV

Pour-El and Richards [2] were the first to study computable Banach spaces up
to computable isometries. We observe that it is the category of computable metric
spaces computable isometries are the natural morphisms, and introduce the notion
of a computably categorical metric space:

Definition 0.1. We say that an uncountable metric space is computably categorical
if every two computable structures on this space are equivalent up to a computable
isometry.

Our definition is motivated by the classical notion of a computably categorical
(autostable) countable algebraic structure due to Mal’cev [1] and Rabin [3]. We
also observe that our definition can be easily modified to the case of computable
Banach spaces: it is sufficient to restrict ourselves to computable isometries which
are Banach space isomorphisms. Our approach in the case of Banach spaces is
equivalent to the one from Pour-El and Richards [2] mentioned above.

We show that Cantor space, the Urysohn space, and every separable Hilbert
space are computably categorical as metric spaces, but the space C[0, 1] of contin-
uous functions on the unit interval with the supremum metric is not (as am metric
space). We also characterize computably categorical metric subspaces of Rn, and
give a sufficient condition for a metric space to be computably categorical.

We hope that our research will help in establishing new links between computable
model theory and computable analysis.
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Weak L1-computability and Limit

L1-computability

Kenshi Miyabe∗

Brattka, Miller and Nies [1] showed that some randomness notions are char-
acterized by differentiability of some classes of functions. They also proposed to
study which class corresponds to which randomness notion. Pathak, Rojas and
Simpson [3] and independently Rute [4] showed that a real in the unit interval
is Schnorr random if and only if the Lebesgue differentiation theorem for the
point holds for all effective version of L1-computable functions. Then its other
randomness versions are of our interest. The author [2] gave several character-
izations of the class of the effective version of L1-computable functions. Then
we also study its other randomness versions.

Let (X, d, α) be a computable metric space and µ be a computable measure
on it. The following definition and result are by [2]. A integral test for Schnorr
randomness is a nonnegative lower semicomputable function f :⊆ X → R whose
integral is computable. A function f is L1-computable with an effective code if
there exists a computable sequence {sn} of finite rational step functions such
that f = limn sn and ||sn+1 − sn||1 ≤ 2−n for all n.

Definition 1 ([2]). Let f :⊆ X → R be a function whose domain is the set of
Schnorr random points. Then f is L1-computable with an effective code iff f is
the difference between two integral tests for Schnorr randomness.

The following is the Martin-löf randomness verions of this result. Recall that
an integral test is a nonnegative lower semicomputable function t : X → R with∫
tdµ <∞.

Definition 2. A function f :⊆ X → R is weakly L1-computable if there exists
a computable sequence {sn} of finite rational step functions such that f(x) =
limn sn(x) and

∑
n ||sn+1 − sn||1 <∞.

Theorem 3. Let f :⊆ X → R be a function whose domain is the set of Martin-
Löf random points. Then f is weakly L1-computable iff f is the difference be-
tween two integral tests.

Similarly we can give the weak 2-randomness version.
The author gave another characterization of the effective L1-computability

via Schnorr layerwise computability. We say a function f :⊆ X → R is Schnorr

∗Research Institute for Mathematical Sciences, Kyoto University, kmiyabe@kurims.kyoto-
u.ac.jp
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layerwise computable if there exists a Schnorr test {Un} such that the restriction
f |X\Un

is uniformly computable.

Theorem 4 ([2]). Let f :⊆ X → R be a function whose domain is the set of
Schnorr random points. Then f is Schnorr layerwise computable and its L1-
norm is computable iff f is the difference between two integral tests for Schnorr
randomness.

To study the other randomness versions of this result, we introduce Solovay
reducibility for nonnegative lower semicomputable functions. Recall the follow-
ing characterization of Solovay reducibility. For left-c.e. reals α and β, α ≤S β
iff there are a constant d and a left-c.e. real γ such that dβ = α+ γ.

Definition 5. Let f, g be nonnegative lower semicomputable functions. We say
that f is Solovay reducible to g (denoted by f ≤S g) if there exists a computable
real d and a nonnegative lower semicomputable function h such that

d · g =WR f + h.

Recall that a Solovay test for Schnorr randomness is a sequence {Un} of
uniformly c.e. open sets such that

∑
n µ(Un) is computable.

Theorem 6. A nonnegative lower semicomputable function f has a computable
integral iff there exist a computable sequence {an} of natural numbers and a
Solovay test {Un} for Schnorr randomness such that f ≤S

∑
n an · 1Un and∑

n anµ(Un) is computable.

This theorem implies one implication of Theorem 4. Hence Solovay reducibil-
ity for nonnegative lower semicomputable functions will be a useful tool to study
the relation between randomness notions and computability (like Schnorr lay-
erwise computability).
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Computability of Probability Distributions and Characteristic

Functions

Takakazu Mori ∗ Yoshiki Tsujii † Mariko Yasugi ‡

We have worked on mutual relationships between computability of probability distributions (Borel prob-
ability measures on the real line R) and that of the corresponding probability distribution functions. As a
sequel, we here deal with the same theme on probability distributions and the corresponding characteristic
functions. We will show that the computability property as well as the effective convergence mutually transfer
(under certain conditions) between those objects.

The characteristic function ϕ of a probability distribution µ is defined as the Fourier transformation, that
is, ϕ(t) =

∫
R
eitxµ(dx) = µ(eit·), and is characterized by the following properties: (Ci) ϕ is positive definite,

(Cii) ϕ(t) is continuous at 0, (Ciii) ϕ(0) = 1.

1 Preliminaries

Definition 1.1 (Computability of probability distributions [2]) A sequence of probability distributions {µm}
is said to be computable, if {µm(fn)} is a computable double sequence of real numbers for any computable
sequence of functions {fn} with a recursive compact support L(n).

We denote
∫
R f(x)µ(dx) with µ(f).

Definition 1.2 (Effective convergence of probability distributions [2]) A sequence of probability distribu-
tions {µm} is said to converge effectively to a probability distribution µ if there exists a recursive function
α(n, k) such that

|µm(fn)− µ(fn)| < 2−k if m ≥ α(n, k) (1)

holds for any computable sequence of functions {fn} with compact support.

Proposition 1.3 (Effective tightness of an effectively convergent sequence, Effectivization of Lemma 15.4 in
[3]) If a computable sequence of probability distributions {µm} effectively converges to a probability distribution
µ, then there exists a recursive function α(k) such that µm(wcα(k)) < 2−k for all m.

It also holds that µm([−α(k)− 1, α(k) + 1]C) < 2−k for all m.

{fn} is said to be effectively bounded, if there exists a recursive M(n) such that |fn(x)| ≤M(n).

Proposition 1.4 ([2]) If {µm} is computable, then it is weakly sequentially computable, that is, {µm(fn)}
is a computable sequence of reals for all effectively bounded computable sequence of functions {fn}.

Theorem 1.5 (Effective dominated convergence theorem for dx) Let {gm.n} be a computable sequence of
functions which converges effectively to {fm}. Assume that there exists an effectively integrable computable
sequence of functions {hm} such that |gm,n(x)| ≤ hm(x).

Then {gm,n} is effectively integrable and {
∫
R gm,n(x)dx} converges effectively to

{
∫
R fm(x)dx} as n tends to infinity effectively in m.

Theorem 1.6 Let {fn(x, y)} be a computable sequence of binary functions and let {µm} be a computable
sequence of probability distributions.

∗Faculty of Science, Kyoto Sangyo University: morita@cc.kyoto-su.ac.jp
†Faculty of Science, Kyoto Sangyo University: tsujiiy@cc.kyoto-su.ac.jp
‡Graduate School of Letters, Kyoto University: yasugi@cc.kyoto-su.ac.jp
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(1) If {fn(x, y)} is effectively bounded, then, as a function of x, {
∫
R fn(x, y)µm(dy)} is an effectively

bounded computable double sequence of functions of x.
(2) If there exists an effectively integrable computable function g(y) such that |fn(x, y)| ≤ g(y), then

{
∫
R fn(x, y)dy} is a computable sequence of functions of x.

2 Characteristic functions

In the following, {µm} and µ will respectively denote a sequence of probability distributions and a probability
distribution, and ϕm and ϕ will denote the corresponding characteristic functions.

Theorem 2.1 If {µm} is computable, then {ϕm} is uniformly computable.

Theorem 2.2 (Effective Glivenko, cf, Theorem 2.6.4 in [1]) Let {ϕm} be computable.
Then, {µm} converges effectively to µ if {ϕm} converges effectively to ϕ.

Theorem 2.3 (Effectivization of Theorem 2.6.3 in [1]) Let {µm} and µ be computable. Assume that the
corresponding probability distribution functions {Fm} and F are Fine computable. Then, {ϕm} converges
effectively (compact-uniformly) to ϕ if {µm} converges effectively to µ.

Theorem 2.4 If {ϕm} is computable, then {µm} is computable.

Theorem 2.5 (Effective Bochner’s theorem) In order for ϕ(t) to be a characteristic function of a com-
putable probability distribution, it is necessary and sufficient that the following three conditions hold.

(i) ϕ is positive definite. (ii′) ϕ is computable. (iii) ϕ(0) = 1.

3 De Moivre-Laplace Central Limit Theorem

Let (Ω,B,P, {Xn}) be a realization of Coin Tossing with success probability p, that is, (Ω,B,P) is a probability
space and {Xn} is an independent sequence of {0, 1}-valued random variables with the same probability
distribution P(Xn = 1) = p and P(Xn = 0) = q = 1− p.

The probability distribution of Sm = X1 + · · · + Xm is the binomial distribution µm =
∑m
`=0

(
m
`

)
p`(1 −

p)m−`δ` and its characteristic function ϕm(t) is equal to (peit + q)m.

Theorem 3.1 (Effective de Moivre-Laplace central limit theorem) If p is a computable real number, then
the probability distribution function of Ym = X1+···Xm−mp√

mp(1−p)
=
∑m
`=1

X`−p√
mpq converges effectively to the standard

Gaussian distribution.
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“Almost everywhere” theorems and algorithmic

randomness

André Nies
University of Auckland, New Zealand

Several important theorems in analysis assert a property for almost every
real z. For instance, the Lebesgue density theorems says that for a measurable
set E, almost every z ∈ E has density 1 in E.

Now consider the case where the given objects are effective in some sense.
How strong an algorithmic randomness notion for a real z is needed to make
the theorem hold at z? Will the theorem in fact characterize the randomness
notion?

In [2] we analyzed an effective version of the Lebsegue differentation theorem
in this way. We showed that a real z is computably random if and only if each
nondecreasing computable function on the unit interval is differentiable at z.

In the past 15 months there has been considerable progress when the given
objects are effective in some weak sense, but not necessarily computable. In
this case, usually Martin-Loef randomness of z is not enough, but the somewhat
stronger notion of difference randomness (that is, ML-randomness together with
Turing incompleteness) often suffices. In [1] we show that a ML-random real
is difference random if and only if it has positive density in every effectively
closed set containing it. We also use the concept of non-porosity to show that all
Banach-Mazur computable functions satisfy the Denjoy alternative at difference
random reals.

In [3] we consider nondecreasing functions g, called interval-r.e., where g(b)−
g(a) is left-r.e. uniformly in rationals a, b with 0 ≤ a < b ≤ 1. We show that
each such continuous function is the variation of a computable non-decreasing
function. Forthcoming work with Bienvenu, Greenberg, Kucera, and Turetsky
shows that a randomness notion of z slightly stronger than difference random-
ness makes these functions differentiable at z, and in particular ensures density
1 in in every effectively closed set containing the real.

[1] Bienvenu, Hoelzl, Miller and Nies. The Denjoy alternative for computable
functions. Proceedings of STACS 2012.
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OVERCOMING INTRACTABLE COMPLEXITY IN AN AUTOMATIC

THEOREM PROVER FOR REAL-VALUED FUNCTIONS

PROF. LAWRENCE C. PAULSON

Real quantifier elimination, first established by Tarski [8] and later refined by Collins
[2] and others, implies the decidability of first-order formulas involving the familiar
arithmetic operations over the real numbers. Giving necessary and sufficient conditions
for the existence of real roots of polynomials amounts to quantifier elimination. A classic
example is the quadratic equation ax2 + bx+ c = 0, which has a real solution subject to
surprisingly complicated conditions:

∃x [ax2 + bx + c = 0] ⇐⇒ b2 ≥ 4ac ∧ (c = 0 ∨ a 6= 0 ∨ b2 > 4ac).

We are accustomed to simply b2 ≥ 4ac as a sufficient condition, but the full formula
covers the degenerate cases a = 0 and b = 0. Even in this trivial example, eliminating
a quantifier greatly increases the formula’s Boolean complexity. Quantifier elimination
is possible regardless of the degrees of the polynomials or the logical complexity of the
formula. Given the tremendous power of this procedure, it is hardly surprising to learn
that its complexity is intractable [4]: the length of the resulting quantifier-free formula
can be doubly exponential in the number of quantified variables.

Researchers have made strenuous efforts to design efficient quantifier elimination pro-
cedures for well-behaved problem classes. Literature surveys include Dolzmann et al. [5]
and Passmore [6]. The decision problem is called RCF, for “real-closed fields”: fields
that are elementarily equivalent to the field of real numbers.

Augmenting the language of polynomials with real-valued functions such as ln, exp,
sin, cos, tan−1 obviously makes the decision problem even more difficult. Few decision
procedures exist for such extended languages, regardless of complexity. This suggests
the use of heuristic methods.

MetiTarski is an automatic theorem prover for first-order logic including polynomials
and real-valued special functions. It solves problems in this extended language using a
combination of resolution theorem proving and RCF decision procedures [1]. The key
idea is to provide upper and lower bounds for each function of interest. Such bounds will
typically be polynomials or rational functions obtained from power series or continued
fraction expansions [3]. Inevitably, we need families of bounds, valid over various inter-
vals, and trading accuracy against simplicity. Resolution uses these bounds (supplied as
axioms) to reduce a problem involving special functions to problems involving rational
functions, and ultimately to problems in RCF, which can then be solved by a decision
procedure.

Despite the terrible complexity of real quantifier elimination, MetiTarski uses it as a
subroutine. And in many cases, MetiTarski can prove difficult theorems in a couple of
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seconds. Here is an example:

∀ t > 0, v > 0

((1.565 + 0.313 v) cos(1.16 t) + (.0134 + .00268 v) sin(1.16 t)) e−1.34 t

− (6.55 + 1.31 v) e−0.318 t + v ≥ −10

MetiTarski actually outputs a proof, not one that a mathematician would want to read,
but a detailed formal deduction in the resolution calculus.

The complexity of real quantifier elimination imposes strict limits on the number of
variables allowed in a problem. This is largely dependent on the choice of RCF decision
procedure. Early work used only QEPCAD, and theorems in more than two variables
could seldom be proved. More recently, we have incorporated Mathematica, and proved
theorems with up to 5 variables. The latest work uses the decision procedure Z3, which
now supports non-linear arithmetic. With the help of heuristics specialised to MetiTarski
[7], theorems with up to 9 variables can be proved.

Acknowledgements. The developers of MetiTarski include Behzad Akbarpour, James
Bridge and Grant Passmore. The research was supported by the Engineering and
Physical Sciences Research Council [grant numbers EP/C013409/1, EP/I011005/1 and
EP/I010335/1].
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Compactness and separation for represented

spaces (Extended Abstract)

Arno Pauly
Clare College

University of Cambridge, United Kingdom
Arno.Pauly@cl.cam.ac.uk

Abstract

The effective notions of compactness and topological separation are
studied in full generality for represented spaces. Each concept is char-
acterized by a multitude of equivalent properties, each corresponding the
computability or continuity of certain functions. In particular, admissibil-
ity is identified as the effective counterpart to T0 separation. A synthetic
approach allows simple proofs of strong results compared to the previous
literature.

In the following, the main results of this work are listed. Note that for
arbitrary represented spaces X, Y we use C(X,Y) for the function space from
X to Y, and A(X), O(X) and K(X) for the space of closed, open and saturated
compact subsets of X. A complete version is available at the arXiv as [4]. Most
of these results are generalizations of known ones, e.g. in [5, 2, 1, 8, 7] using the
mindset of synthetic topology [3].

Theorem 1. The following properties are equivalent for a represented space
X:

1. X is (computably) compact, i.e. the map IsEmptyX : A(X) → S is
continuous (computable).

2. IsFullX : O(X) → S defined via IsFullX(X) = 1 and IsFullX(U) = 0
otherwise is continuous (computable).

3. For every (computable) A ∈ A(X) the subspace A is (computably) com-
pact.

4. The map id : A(X)→ K(X) is well-defined and continuous (computable).

5. ⊆: A(X) × O(X) → S defined via ⊆ (A,O) = 1, iff A ⊆ O is continuous
(computable).

6. IsCover : C(N,O(X))→ S defined via IsCover((Un)n∈N) = 1, iff
⋃
n∈N Un =

X is continuous (computable).
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7. FiniteSubcover :⊆ C(N,O(X)) ⇒ N with dom(FiniteSubcover)
= {(Un)n∈N |

⋃
n∈N Un = X} and N ∈ FiniteSubcover((Un)n∈N) iff⋃N

n=0 Un = X is continuous (computable).

8. Enough :⊆ C(N,A(X))⇒ N with (Ai)i∈N ∈ dom(Enough) iff
⋂
i∈NAi = ∅,

and N ∈ Enough((Ai)i∈N) iff
⋂
i≤N Ai = ∅ is continuous (computable).

9. For all Y, the map π2 : A(X×Y)→ A(Y) defined via π2(A) = {y ∈ Y |
∃x ∈ X (x, y) ∈ A} is continuous (computable).

10. For some non-empty Y (containing a computable point), the map π2 :
A(X×Y)→ A(Y) is continuous (computable).

Theorem 2. The following properties are equivalent for a represented space
X:

1. X is (computably) T2, i.e. the map x 7→ {x} : X → A(X) is well-defined
and continuous (computable).

2. id : K(X)→ A(X) is well-defined and continuous (computable).

3. ∩ : K(X)×K(X)→ K(X) is well-defined and computable.

4. κ : X→ A(X) is well-defined and continuous (computable).

5. 6=: X × X → S defined via 6= (x, x) = 0 and 6= (x, y) = 1 otherwise is
continuous (computable).

6. ∆X = {(x, x) | x ∈ X} ∈ A(X×X) (as a computable element)

Theorem 3. The following properties are equivalent for a represented space
X:

1. X is (computably) admissible (as in Schröder [6]).

2. κ−1 : Xκ → X is well-defined and continuous (computable).

3. X is T0, and for any represented space Y the map f 7→ f :⊆ C(K(Y),K(X))→
C(Y,X) is continuous (computable).

4. X is T0, and for any represented space Y the map −1 :⊆ C(O(X),O(Y))→
C(Y,X) is continuous (computable).
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Domain-represented spaces inside equilogical spaces

Matthias Schröder∗

Universität der Bundeswehr, Munich, Germany

Abstract

The natural functor mapping domain-represented spaces into the category of
equilogical spaces has the disadvantage of neither being full nor preserving function
spaces. We define a useful subcategory of domain-represented spaces such that the
aforementioned functor becomes full and preserves the cartesian closed structure.
Moreover, we construct an embedding of the quasi-normal qcb-spaces into this
subcategory which preserves binary products and function spaces.

1 Extended Abstract

There are several options to represent topological spaces via countably-based topolog-
ical spaces appropriately. The Type Two Model of Effectivity (TTE) uses Baire space
representations or Cantor space representations [9]. Domain Theory prefers to employ
domains as the space of names, namely either countably-based Scott domains [1, 3] or,
more generally, ω-continuous domains. Both approaches can be compared by consider-
ing equilogical spaces [1, 2, 8], which admit an arbitrary countably-based T0-space as
the space of representatives. The ensuing categories, namely the category Rep(NN) of
Baire-represented spaces, the category DomRep of domain-represented spaces and the
category ωEqu of countably-based equilogical spaces, are all cartesian closed.

The fact that the Baire space and ω-Scott domains are allowed as representing spaces
in equilogical spaces gives rise to two evident functors ERep : Rep(NN) → ωEqu and
EDR : DomRep → ωEqu. The second functor, for example, maps a domain-represented
spaces X to the countably-based equilogical space that has the totality of X, i.e. the
space of names, as its representing space. Both functors are not well-behaved: they fail
to preserve function spaces; the second functor is not even full.

We motivate and introduce the class of upwards-closed domain-represented spaces.
These consist of those domain-represented spaces such that the set of names of each
element is upwards-closed in the representing domain. The corresponding subcategory
UpDomRep of DomRep turns out to be cartesian closed. We prove that the restriction
EUp of EDR to upwards-closed domain-represented spaces preserves function spaces and
is full.

Finally we show that UpDomRep contains a copy of an important subcategory of qcb-
spaces, namely the cartesian closed category QN of quasi-normal qcb-spaces [7]. The
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respective embedding functor EQN : QN → EDR preserves binary products and function
spaces. Moreover it chimes with the functor EDR in the sense that the diagram

QCB0
� � EQCB // ωEqu

QN
� � EQN //

⊆
OO

UpDomRep
?�

EUp

OO

commutes, where the cartesian closed embedding functor EQCB is defined as in [4].
This investigation is motivated by the fact that the categories ωEqu and DomRep

are both used to model some approaches to functional programming in Computable
Analysis [2, 5, 6]. Our results show that it does not matter which of the categories
ωEqu and DomRep is used to formalise those approaches.
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Abstract

Algorithms are viewed as one aspect of proofs in (constructive) analy-
sis. The data for such algorithms are finite or infinite lists of signed digits
−1, 0, 1 (i.e., reals as streams), or possibly non well-founded labelled (with
lists of signed digits −1, 0, 1) ternary trees (representing uniformly con-
tinuous functions). A corresponding realizability interpretation of proofs
is discussed. The main tools are (i) a distiction between computationally
relevant and irrelevant logical connectives and (ii) simultaneous induc-
tively/coinductively defined predicates.
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