Enumeration Degree Spectra The Incomputable Chicheley Hall, 12 - 15 June, 2012

Alexandra A. Soskova

Faculty of Mathematics and Informatics Sofia University Isaac Newton Institute for Mathematical Sciences Semantics and Syntax: A Legacy of Alan Turing

June 13, 2012

The enumeration reducibility

Definition. The set A is enumeration reducible to the set B $(A \leq_e B)$, if $A = W_e(B)$ for some enumeration operator W_e .

Definition. Given a set A, denote by $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any sets A and B:

- **1** A is c.e. in B iff $A \leq_e B^+$.

Definition. A set A is called *total* iff $A \equiv_e A^+$.

The standard embedding: $\iota: \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$.

Degree spectra

Let $\mathfrak{A} = (A; R_1, \dots, R_k)$ be a countable structure. An enumeration of \mathfrak{A} is every surjective mapping of ω onto A.

Given an enumeration f of $\mathfrak A$ and a subset of B of A^a , let

$$f^{-1}(B) = \{\langle x_1, \dots, x_a \rangle \mid (f(x_1), \dots, f(x_a)) \in B\}.$$

$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq).$$

Definition.[Richter] The Turing degree spectrum of $\mathfrak A$ is the set

$$DS_T(\mathfrak{A}) = \{d_T(f^{-1}(\mathfrak{A})) \mid f \text{ is a one-to-one enumeration of } \mathfrak{A}\}.$$

The least element of $DS_T(\mathfrak{A})$ is called the *degree of* \mathfrak{A} .

Enumeration degree spectra

Definition.[Soskov] The enumeration degree spectrum of $\mathfrak A$ is the set

$$DS(\mathfrak{A}) = \{d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A}\}.$$

The least element of $DS(\mathfrak{A})$ is called the *e-degree of* \mathfrak{A} .

Proposition. The enumeration degree spectrum is closed upwards with respect to total e-degrees, i.e. if **b** is a total e-degree and $\mathbf{a} \leq_{\mathbf{e}} \mathbf{b}$ for some $\mathbf{a} \in DS(\mathfrak{A})$, then $\mathbf{b} \in DS(\mathfrak{A})$.

Total structures

Definition. The structure \mathfrak{A} is called *total* if for every total enumeration f of \mathfrak{A} the set $f^{-1}(\mathfrak{A})$ is total.

Proposition. If $\mathfrak A$ is a total structure then $DS(\mathfrak A) = \iota(DS_T(\mathfrak A))$.

Given a structure $\mathfrak{A}=(A,R_1,\ldots,R_k)$, for every j denote by R_j^c the complement of R_j and let $\mathfrak{A}^+=(A,R_1,\ldots,R_k,R_1^c,\ldots,R_k^c)$.

Proposition.

- $\iota(DS_T(\mathfrak{A})) = DS(\mathfrak{A}^+).$
- If $\mathfrak A$ is total then $DS(\mathfrak A) = DS(\mathfrak A^+)$.

Co-spectra

Definition. Let \mathcal{A} be a nonempty set of enumeration degrees. The *co-set of* \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A} . Namely

$$\textit{co}(\mathcal{A}) = \{\textbf{b}: \textbf{b} \in \mathcal{D}_e \ \& \ (\forall \textbf{a} \in \mathcal{A})(\textbf{b} \leq_e \textbf{a})\}.$$

Definition. The co-spectrum of the structure \mathfrak{A} is the set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$.

The greatest element of $CS(\mathfrak{A})$ we call the *co-degree* of \mathfrak{A} .

Every degree of $\mathfrak A$ is a co-degree of $\mathfrak A$ as well. The vice versa is not always true.

Co-spectra

Definition. Let \mathcal{A} be a nonempty set of enumeration degrees. The *co-set of* \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A} . Namely

$$co(\mathcal{A}) = \{ \mathbf{b} : \mathbf{b} \in \mathcal{D}_e \ \& \ (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_e \mathbf{a}) \}.$$

Definition. The co-spectrum of the structure \mathfrak{A} is the set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$.

The greatest element of $CS(\mathfrak{A})$ we call the *co-degree* of \mathfrak{A} .

Every degree of $\mathfrak A$ is a co-degree of $\mathfrak A$ as well. The vice versa is not always true.

Jump spectra

Definition. The *n*th jump spectrum of $\mathfrak A$ is the set

$$DS_n(\mathfrak{A}) = \{d_e(f^{-1}(\mathfrak{A})^{(n)}) : f \text{ is an enumeration of } \mathfrak{A}\}.$$

The least element of $DS_n(\mathfrak{A})$ is called the *nth jump degree of* \mathfrak{A} .

Definition. The co-set $CS_n(\mathfrak{A})$ of the *n*th jump spectrum of \mathfrak{A} is called *n*th jump co-spectrum of \mathfrak{A} .

The greatest element of $CS_n(\mathfrak{A})$ is called the *nth jump co-degree* of \mathfrak{A} .

Some examples

Example.[Richter] Let $\mathfrak{A}=(A;<)$ be a linear ordering. $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A})=\{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a}=\mathbf{0}_e$.

Example. [Knight] For a linear ordering \mathfrak{A} , $CS_1(\mathfrak{A})$ consists of all e-degrees of Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example.[Slaman,Whener] There exists a structure $\mathfrak A$ s.t.

$$DS(\mathfrak{A}) = \{a : a \text{ is total and } \mathbf{0}_e < a\}.$$

Clearly the structure $\mathfrak A$ has co-degree $\mathbf 0_e$ but has not a degree.

Some examples

Example. [Richter] Let $\mathfrak{A}=(A;<)$ be a linear ordering. $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A})=\{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a}=\mathbf{0}_e$.

Example. [Knight] For a linear ordering \mathfrak{A} , $CS_1(\mathfrak{A})$ consists of all e-degrees of Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example.[Slaman,Whener] There exists a structure $\mathfrak A$ s.t.

$$DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}.$$

Clearly the structure $\mathfrak A$ has co-degree $\mathbf 0_e$ but has not a degree.

Some examples

Example.[Richter] Let $\mathfrak{A}=(A;<)$ be a linear ordering. $DS(\mathfrak{A})$ contains a minimal pair of degrees and hence $CS(\mathfrak{A})=\{\mathbf{0}_e\}$. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree \mathbf{a} , then $\mathbf{a}=\mathbf{0}_e$.

Example. [Knight] For a linear ordering \mathfrak{A} , $CS_1(\mathfrak{A})$ consists of all e-degrees of Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example. [Slaman, Whener] There exists a structure \mathfrak{A} s.t.

$$DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}.$$

Clearly the structure $\mathfrak A$ has co-degree $\mathbf 0_e$ but has not a degree.

Representing the principle countable ideals as co-spectra

Example. [Coles, Downey, Slaman] Let G be a torsion free abelian group of rank 1, i.e. G is a subgroup of Q.

There exists an enumeration degree \mathbf{s}_{G} such that

- $DS(G) = \{ \mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b} \}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff \mathbf{s}_G is a total e-degree.
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$.

Corollary. Every principle ideal of enumeration degrees is CS(G) for some G.

Representing the principle countable ideals as co-spectra

Example. [Coles, Downey, Slaman] Let G be a torsion free abelian group of rank 1, i.e. G is a subgroup of Q.

There exists an enumeration degree s_G such that

- $DS(G) = \{ \mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b} \}.$
- The co-degree of G is \mathbf{s}_G .
- G has a degree iff \mathbf{s}_G is a total e-degree.
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the n-th jump degree of G.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$.

Corollary. Every principle ideal of enumeration degrees is CS(G) for some G.

Representing non-principle countable ideals as co-spectra

Example. Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathfrak{A} = (\mathbb{N}; f; \sigma)$,

$$f(\langle i, n \rangle) = \langle i + 1, n \rangle;$$

$$\sigma = \{\langle i, n \rangle : n = 2k + 1 \lor n = 2k \& i \in B_k\}.$$

Then
$$CS(\mathfrak{A}) = I(d_e(B_0), \dots, d_e(B_n), \dots)$$

Spectra with a countable base

Definition. Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

$$(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$$

Theorem. A structure $\mathfrak A$ has an e-degree if and only if $DS(\mathfrak A)$ has a countable base.

An upwards closed set of degrees which is not a degree spectra of a structure

Properties of upwards closed sets

Theorem. [Selman] $\mathbf{a} \leq_e \mathbf{b}$ iff for all total \mathbf{c} ($\mathbf{b} \leq_e \mathbf{c} \Rightarrow \mathbf{a} \leq_e \mathbf{c}$).

Proposition. Let $A \subseteq \mathcal{D}_e$ be a upwards closed set with respect to total e-degrees. Denote by $A_t = \{\mathbf{a} : \mathbf{a} \in A \& \mathbf{a} \text{ is total}\}$. Then $co(A) = co(A_t)$.

Specific properties of the degree spectra

Theorem. Let $\mathfrak A$ be a structure, $1 \le n$ and $\mathbf c \in DS_n(\mathfrak A)$. Then

$$CS(\mathfrak{A}) = co(\{\mathbf{b} \in DS(\mathfrak{A}) : \mathbf{b}^{(n)} = \mathbf{c}\}).$$

Example. (Upwards closed set for which the Theorem is not true)

Let $B \not\leq_e A$ and $A \not\leq_e B'$. Let

$$D = \{ \mathbf{a} : d_e(A) \leq_e \mathbf{a} \} \cup \{ \mathbf{a} : d_e(B) \leq_e \mathbf{a} \}.$$

Set $A = \{ \mathbf{a} : \mathbf{a} \in \mathcal{D} \& \mathbf{a}' = d_e(B)' \}.$

- $d_e(B)$ is the least element of A and hence $d_e(B) \in co(A)$.
- $d_e(B) \not\leq d_e(A)$ and hence $d_e(B) \not\in co(\mathcal{D})$.

Specific properties of the degree spectra

Theorem. Let $\mathfrak A$ be a structure, $1 \leq n$ and $\mathbf c \in DS_n(\mathfrak A)$. Then

$$CS(\mathfrak{A}) = co(\{\mathbf{b} \in DS(\mathfrak{A}) : \mathbf{b}^{(n)} = \mathbf{c}\}).$$

Example. (Upwards closed set for which the Theorem is not true)

Let $B \not\leq_e A$ and $A \not\leq_e B'$. Let

$$\mathcal{D} = \{\mathbf{a} : d_e(A) \leq_e \mathbf{a}\} \cup \{\mathbf{a} : d_e(B) \leq_e \mathbf{a}\}.$$

Set $A = \{ \mathbf{a} : \mathbf{a} \in \mathcal{D} \ \& \ \mathbf{a}' = d_e(B)' \}.$

- $d_e(B)$ is the least element of A and hence $d_e(B) \in co(A)$.
- $d_e(B) \not\leq d_e(A)$ and hence $d_e(B) \not\in co(\mathcal{D})$.

The minimal pair theorem

Theorem. Let $\mathbf{c} \in DS_2(\mathfrak{A})$. There exist $\mathbf{f}, \mathbf{g} \in DS(\mathfrak{A})$ s.t. \mathbf{f}, \mathbf{g} are total, $\mathbf{f}'' = \mathbf{g}'' = \mathbf{c}$ and $CS(\mathfrak{A}) = co(\{\mathbf{f}, \mathbf{g}\})$.

Notice that for every enumeration degree \mathbf{b} there exists a structure $\mathfrak{A}_{\mathbf{b}}$ s. t. $DS(\mathfrak{A}_{\mathbf{b}}) = \{\mathbf{x} \in \mathcal{D}_T | \mathbf{b} <_e \mathbf{x} \}$. Hence

Corollary. [Rozinas] For every $\mathbf{b} \in \mathcal{D}_e$ there exist total \mathbf{f}, \mathbf{g} below \mathbf{b}'' which are a minimal pair over \mathbf{b} .

Not every upwards closed set of enumeration degrees has a minimal pair:

An upwards closed set with no minimal pair

The quasi-minimal degree

Definition. Let $\mathcal A$ be a set of enumeration degrees. The degree $\mathbf q$ is quasi-minimal with respect to $\mathcal A$ if:

- $\mathbf{q} \notin co(\mathcal{A})$.
- If \mathbf{a} is total and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$.
- If **a** is total and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in co(\mathcal{A})$.

From Selman's theorem it follows that if \mathbf{q} is quasi-minimal with respect to \mathcal{A} , then \mathbf{q} is an upper bound of $co(\mathcal{A})$.

The quasi-minimal degree for a degree spectra

Theorem. For every structure $\mathfrak A$ there exists a quasi-minimal with respect to $DS(\mathfrak A)$ degree.

Corollary. [Slaman and Sorbi] Let I be a countable ideal of enumeration degrees. There exists an enumeration degree \mathbf{q} s.t.

- If $a \in I$ then $a <_e q$.
- 2 If \mathbf{a} is total and $\mathbf{a} \leq_{\mathbf{e}} \mathbf{q}$ then $\mathbf{a} \in I$.

Properties of the quasi-minimal degrees

Proposition. For every countable structure \mathfrak{A} there exist continuum many quasi-minimal degrees with respect to $DS(\mathfrak{A})$.

Proposition. The first jump spectrum $DS_1(\mathfrak{A})$ of every structure \mathfrak{A} consists exactly of the enumeration jumps of the quasi-minimal degrees with respect to $DS(\mathfrak{A})$.

Corollary.[McEvoy] For every total e-degree $\mathbf{a} \geq_e \mathbf{0}'_e$ there is a quasi-minimal degree \mathbf{q} with $\mathbf{q}' = \mathbf{a}$.

Properties of the quasi-minimal degrees

Proposition. For every countable structure \mathfrak{A} there exist continuum many quasi-minimal degrees with respect to $DS(\mathfrak{A})$.

Proposition. The first jump spectrum $DS_1(\mathfrak{A})$ of every structure \mathfrak{A} consists exactly of the enumeration jumps of the quasi-minimal degrees with respect to $DS(\mathfrak{A})$.

Corollary. [McEvoy] For every total e-degree $\mathbf{a} \ge_{\mathrm{e}} \mathbf{0}'_{\mathrm{e}}$ there is a quasi-minimal degree \mathbf{q} with $\mathbf{q}' = \mathbf{a}$.

Splitting a total set

Proposition.[Jockusch] For every total e-degree **a** there are quasi-minimal degrees **p** and **q** such that $\mathbf{a} = \mathbf{p} \vee \mathbf{q}$.

Proposition. For every element **a** of the jump spectrum of a structure $\mathfrak A$ there exists quasi-minimal with respect to $DS(\mathfrak A)$ degrees **p** and **q** such that $\mathbf a = \mathbf p \vee \mathbf q$.

Every jump spectrum is the spectrum of a total structure

Let $\mathfrak{A}=(A;R_1,\ldots,R_n)$. Let $\bar{0}\not\in A$. Set $A_0=A\cup\{\bar{0}\}$. Let $\langle .,.\rangle$ be a pairing function s.t. none of the elements of A_0 is a pair and A^* be the least set containing A_0 and closed under $\langle .,.\rangle$.

Definition. *Moschovakis' extension* of \mathfrak{A} is the structure

$$\mathfrak{A}^* = (A^*, R_1, \ldots, R_n, A_0, G_{\langle \cdot, \cdot, \cdot \rangle}).$$

Let
$$K_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta) [x \in W_{e}(\tau^{-1}(\mathfrak{A}))] \}.$$

Set $\mathfrak{A}' = (\mathfrak{A}^*, K_{\mathfrak{A}}, A^* \setminus K_{\mathfrak{A}}).$

Theorem.

- The structure \mathfrak{A}' is total.
- $DS_1(\mathfrak{A}) = DS(\mathfrak{A}')$

Every jump spectrum is the spectrum of a total structure

Let $\mathfrak{A}=(A;R_1,\ldots,R_n)$. Let $\bar{0}\not\in A$. Set $A_0=A\cup\{\bar{0}\}$. Let $\langle .,.\rangle$ be a pairing function s.t. none of the elements of A_0 is a pair and A^* be the least set containing A_0 and closed under $\langle .,.\rangle$.

Definition. *Moschovakis' extension* of $\mathfrak A$ is the structure

$$\mathfrak{A}^* = (A^*, R_1, \ldots, R_n, A_0, G_{\langle \cdot, \cdot, \cdot \rangle}).$$

Let
$$K_{\mathfrak{A}} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta) [x \in W_{e}(\tau^{-1}(\mathfrak{A}))] \}.$$

Set $\mathfrak{A}' = (\mathfrak{A}^*, K_{\mathfrak{A}}, A^* \setminus K_{\mathfrak{A}}).$

Theorem.

- The structure \mathfrak{A}' is total.
- $DS_1(\mathfrak{A}) = DS(\mathfrak{A}').$

The jump inversion theorem

Consider two structures ${\mathfrak A}$ and ${\mathfrak B}$. Suppose that

$$DS(\mathfrak{B})_t = \{\mathbf{a} | \mathbf{a} \in DS(\mathfrak{B}) \text{ and } \mathbf{a} \text{ is total}\} \subseteq DS_1(\mathfrak{A}).$$

Theorem. There exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS_1(\mathfrak{C}) = DS(\mathfrak{B})_t$.

Method: Marker's extensions.

Corollary. Let $DS(\mathfrak{B}) \subseteq DS_1(\mathfrak{A})$. Then there exists a structure \mathfrak{C} s.t. $DS(\mathfrak{C}) \subseteq DS(\mathfrak{A})$ and $DS(\mathfrak{B}) = DS_1(\mathfrak{C})$.

Corollary. Suppose that $DS(\mathfrak{B})$ consists of total degrees greater than or equal to $\mathbf{0}'$. Then there exists a total structure \mathfrak{C} such that $DS(\mathfrak{B}) = DS(\mathfrak{C})$.

The jump of a structure

Remark.

- 2009 Montalban, Notes on the jump of a structure, Mathematical Theory and Computational Practice, 372–378.
- 2009 Stukachev, A jump inversion theorem for the semilattices of Sigma-degrees, Siberian Electronic Mathematical Reports, v. 6, 182 190
- 2012 Montalban, Rice Sequences of Relations, to appear in the Philosophical Transactions A.

Applications

Example.[Ash, Jockusch, Knight and Downey] Let $n \ge 0$. There exists a total structure $\mathfrak C$ s.t. $\mathfrak C$ has a n+1-th jump degree $\mathbf 0^{(n+1)}$ but has no k-th jump degree for $k \le n$.

It is sufficient to construct a structure $\mathfrak B$ satisfying:

- **1** $DS(\mathfrak{B})$ has not a least element.
- **2** $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- **3** All elements of $DS(\mathfrak{B})$ are total and above $\mathbf{0}^{(n)}$.

Consider a set B satisfying:

- ① B is quasi-minimal above $\mathbf{0}^{(n)}$.
- $B' \equiv_e \mathbf{0}^{(n+1)}$

Let G be a subgroup of the additive group of the rationals s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{ \mathbf{a} \mid d_e(S_G) \leq_e \mathbf{a} \text{ and } \mathbf{a} \text{ is total} \}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.

Applications

Example.[Ash, Jockusch, Knight and Downey] Let $n \ge 0$. There exists a total structure $\mathfrak C$ s.t. $\mathfrak C$ has a n+1-th jump degree $\mathbf 0^{(n+1)}$ but has no k-th jump degree for $k \le n$.

It is sufficient to construct a structure ${\mathfrak B}$ satisfying:

- DS(B) has not a least element.
- **2** $\mathbf{0}^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
- **3** All elements of $DS(\mathfrak{B})$ are total and above $\mathbf{0}^{(n)}$.

Consider a set B satisfying:

- **1** B is quasi-minimal above $\mathbf{0}^{(n)}$.
- **2** $B' \equiv_e \mathbf{0}^{(n+1)}$.

Let G be a subgroup of the additive group of the rationals s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{ \mathbf{a} \mid d_e(S_G) \leq_e \mathbf{a} \text{ and } \mathbf{a} \text{ is total} \}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.

Applications

Let $n \ge 0$. There exists a total structure $\mathfrak C$ such that $DS_n(\mathfrak C) = \{ \mathbf a \mid \mathbf 0^{(n)} <_e \mathbf a \}.$

It is sufficient to construct a structure $\mathfrak B$ such that the elements of $DS(\mathfrak B)$ are exactly the total e-degrees greater than $\mathbf 0^{(n)}$.

This could be done by Whener's construction using a special family of sets:

Theorem. Let $n \ge 0$. There exists a family \mathcal{F} of sets of natural numbers s.t. for every X strictly above $\mathbf{0}^{(n)}$ there exists a computable in X set U satisfying the equivalence:

$$F \in \mathcal{F} \iff (\exists a)(F = \{x | (a, x) \in U\}).$$

But there is no such U c.e. in $\mathbf{0}^{(n)}$.

Enumeration degree spectra

- Questions:
 - Describe the sets of Turing degrees (enumeration degrees) which are equal to $DS(\mathfrak{A})$ for some structure \mathfrak{A} .
 - Is the set of all Muchnik degrees containing some degree spectra definable in the lattice of the Muchnik degrees?

Enumeration degree spectra

Thank you!