Continuous Performance Analysis of Fault-Tolerant Virtual Machines

The Concept of an Execution Platform

Boguslaw Jablkowski
Olaf Spinczyk
Department of Computer Science
TU Dortmund
Overview

• Motivation
• Architecture
• System View
• Models and Realization Techniques
 – Real-Time Calculus
 – Performance Model
 – Fault & Dependability Model
• Scenario
• Algorithmic Challenges
• Conclusion and Outlook
Motivation

• Integration of distributed large-scale cyber-physical systems:
 – decoupling of software from dedicated hardware (vendor lock-in)
 – capital and maintenance costs reduction (energy, administration)
 – ease of system extension (new functionalities, new protocols)

• Context: Electric power systems*
 – Example: Switchgear

*DFG research unit FOR1511, *Protection and Control Systems for Reliable and Secure Operation of Electrical Transmission Systems*
Virtualization

- Physical Host
 - Hypervisor
 - Domain 0 privileged
 - VM
 - Management & Monitoring System (MMS)
 - VM
 - User Software
 - Guest-OS
 - VM
 - User Software
 - Guest-OS
 - Hardware
 - App.
 - App.
 - App.
Overview

• Motivation
• Architecture
• System View
• Models and Realization Techniques
 – Real-Time Calculus
 – Performance Model
 – Fault & Dependability Model
• Scenario
• Algorithmic Challenges
• Conclusion and Outlook
Architecture

- Hardware
 - x86 platform

- Hypervisor:
 - Xen 4.1.2
Architecture

- Management & Monitoring System:
 - Distributed (on every Server)
 - Timing and content analysis of VMs
 - Proactive mechanisms
 - Management of VMs

- Virtual machine:
 - User software (application)
 - Tailored operating system
Architecture

- Management & Monitoring System (MMS)
- Domain 0 (privileged)
- Hypervisor
- Hardware
- Physical Host
- User Software
- Guest-OS
- User Software
- Guest-OS
- VM
Architecture

- Communication interfaces:
 - Inter-node
 - Intra-node
Overview

• Motivation
• Architecture
• **System View**
• Models and Realization Techniques
 - Real-Time Calculus
 - Performance Model
 - Fault & Dependability Model
• Scenario
• Algorithmic Challenges
• Conclusion and Outlook
System View

- Determining system data:
 - Environment
 - Hardware
 - Applications
- Static planning and scheduling

- Monitoring
- Resolving hypothetical faults:
 - Searching the configuration space and determining candidates for new system configuration
 - Performance analysis
 - Saving feasible configurations

- Migrating of VMs
- Replication of VMs
- (Re)booting of VMs
- Switching to backup hosts

Proactive mechanisms

Fault or maintenance

Adaptation mechanisms
Overview

• Motivation
• Architecture
• System View
• Models and Realization Techniques
 – Real-Time Calculus
 – Performance Model
 – Fault & Dependability Model
• Scenario
• Algorithmic Challenges
• Conclusion and Outlook
Real-Time Calculus

- Formal performance analysis technique for distributed real-time systems
- Computes bounds for non-functional system properties:
 - Execution delays
 - Buffer utilization
 - Network utilization
- Event streams and hardware capacities represented as functions
- Based on max-min-plus algebra
- Bounds can be mathematically proven correct
Performance Model

• Unifies information about the system:
 • Environment (events)
 • Hardware (capacities)
 • Applications (deadlines)

• Needed for:
 • Planning and scheduling
 • Proactive mechanisms
Performance Model – Modeling Abstraction Level

- Modeling abstraction level:
 - Entire physical host as Server
 - Entire virtual machine as Node
 - Other possibility:
 - Hierarchical scheduling
Fault and Dependability Models

Fault assumption:
• Overwriting of another processes data
• Blocking the CPU

Dependability mechanisms:
1. Standard execution of a VM
Fault and Dependability Models

Fault assumption:
• Overwriting of another processes data
• Blocking the CPU
• Corrupted function output of a single VM

Dependability mechanisms:
1. Standard execution of a VM
2. Redundant execution on a single physical host
Fault and Dependability Models

Fault assumption:
- Overwriting of another processes data
- Blocking the CPU
- Corrupted function output of a single VM
- Failure of a physical host

Dependability mechanisms:
1. Standard execution of a VM
2. Redundant execution on a single physical host
3. Redundant execution on multiple physical hosts and/or backup on multiple hosts
Overview

• Motivation
• Architecture
• System View
• Models and Realization Techniques
 – Real-Time Calculus
 – Performance Model
 – Fault & Dependability Model
• Scenario
• Algorithmic Challenges
• Conclusion and Outlook
Server Failure Scenario

Scenario flow:
• System is working properly
• Failure of server one
• Backup VM’’1 takes over
Server Failure Scenario

Scenario flow:
• VM1, VM’1 and VM2 have to be rescheduled
• Two challenges:
 • Candidates for new system configuration?
Server Failure Scenario

Scenario flow:
• VM1, VM’1 and VM2 have to be rescheduled
• Two challenges:
 • Candidates for new system configuration?
 • Suppose this candidate
 • Real-time capabilities of the new system? Proven bounds?
Overview

- Motivation
- Architecture
- System View
- Models and Realization Techniques
 - Real-Time Calculus
 - Performance Model
 - Fault & Dependability Model
- Scenario
- Algorithmic Challenges
- Conclusion and Outlook
Algorithmic Challenges

Searching for new system configurations:
 • Modeling the scheduling problem as an optimization problem
 • Optimization technique:
 • Genetic programming (other methods possible)
 • Problem representation:
 • Includes already correctly scheduled parts of the system
 • Fitness function:
 • Data dependability
 • Deadlines fulfillment

Continuous performance analysis and validation:
 • Two possible validation approaches:
 1. Compute candidates first and validate them with real-time calculus
 2. Use real-time calculus in the fitness function
Overview

• Motivation
• Architecture
• System View
• Models and Realization Techniques
 – Real-Time Calculus
 – Performance Model
 – Fault & Dependability Model
• Scenario
• Algorithmic Challenges
• Conclusion and Outlook
Conclusion and Outlook

- Relevant and complex undertaking
- Architecture involves a wide range of techniques:
 - Virtualization
 - Tailored operating systems
 - Fault tolerance
 - Scheduling/optimization techniques
 - Formal performance analysis

Further validation and evaluation of the architecture in order to guarantee fault tolerance and real-time capabilities.

Thank You