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Abstract. In this paper, we introduce and discuss a new framework
for the modeling and revision of probabilistic belief. The epistemic
states encode degrees of belief topped by second-order uncertainty
using special Spohn-type ranking measures over subjective proba-
bility distributions. The revision strategy, which handles incoming
information translated into linear probability constraints, is based on
variants of Jeffrey-conditionalization and information distance mini-
mization.

1 INTRODUCTION

Belief revision, the modification of the epistemic structure when con-
fronted to new, possibly conflicting information, is a fundamental in-
gredient of intelligent behaviour. Its formal modeling is therefore a
central research theme in artificial intelligence. However, when talk-
ing about belief revision, it is important to keep in mind the distinc-
tion between reasoning about a changing world (e.g. about the effects
of actions or events) and defeasible learning about a static or dynamic
world. Both issues are relevant for epistemic kinematics, but their fo-
cus differs. The first task is subsumed by the more general problem of
nonmonotonic reasoning about action and change. The second task
is belief revision in its proper sense and constitutes the subject of this
paper.

Traditional work in belief revision has been mainly concerned with
qualitative propositional approaches. That is, the epistemic state is
assumed to be a propositional belief set structured by some epis-
temic preference ordering. New information here takes the form of a
proposition to be integrated into the belief set without giving up con-
sistency. This is achieved under the control of the preference struc-
ture. Originally, not much thought was devoted to the question of
how to revise the ordering itself, although this is absolutely neces-
sary for modeling iterated revision in a realistic way. A seminal con-
tribution to this problem was made by Spohn [Spohn 88, 90]. He
developed a semi-qualitative procedure for the iterated revision of
surprise/disbelief measures (or order-of-magnitude probability valu-
ations) based on Jeffrey-conditionalization. In more recent times, his
work has been supplemented by several other proposals for revising
prioritized epistemic structures [Boutilier 93, Williams 94, Lehmann
95, Darwiche and Pearl 97]. But these approaches, in addition to their
individual problems, share a common drawback - they are hard to op-
erationalize (where do the priorities come from, what do they mean),
and they are not fine-grained enough for some practical purposes.

Another line of research, less anchored in AI, has been probabilis-
tic revision or update. Here, an epistemic state is meant to be repre-
sented by a subjective probability distribution, or a set of them, and
the input usually consists of linear probabilistic constraints. Classi-
cal conditionalization on a proposition A, only justifiable if we are
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fully convinced of its truth, then corresponds to an update with the
constraint Prob(:A) = 0. A more general and cautious approach is
Jeffrey-conditionalization, where the degree of belief associated with
the new proposition (after some unspecified evaluation or delibera-
tion process) may be any � 2 [0; 1], whereas the conditional prob-
abilities Prob(:jA) and Prob(:j:A) are preserved. Here the corre-
sponding updating constraint is Prob(A) = �.

A very popular approach for dealing with arbitrary linear prob-
abilistic constraints is to pick up the canonical cross-entropy mini-
mizing model. Cross-entropy is a distinguished information-distance
concept which measures the gain of information realized when pass-
ing from one distribution to another. Shore and Johnson have shown
that cross-entropy minimization can be characterized by an intu-
itively appealing set of postulates [Shore and Johnson 80].

There are several open issues in probabilistic belief revision. For
instance, how should we apply cross-entropy minimization, or maybe
alternative update rules, to suitable sets of probability measures?
How should we proceed if there is a second-order uncertainty val-
uation on top of these sets? In fact, what is the right level of ab-
straction for epistemic states? In this paper, we are going to address
these questions by developing a general framework for the modeling
and iterated revision of probabilistic belief. Our approach exploits
cross-entropy minimization in a novel way and implements second-
order uncertainty through particular ranking measures. For the sake
of clarity, and because we want to concentrate on the conceptual is-
sues, we try to avoid technical details and make some simplifying
assumptions. So we restrict ourselves to finitary subjective probabil-
ity measures.

The plan of the paper is as follows. We start by introducing some
basic formal ingredients and sketch a general framework for belief
revision together with some examples. Within this context, we dis-
cuss several possibilities for defining epistemic states and argue for a
particular kind of ranking measures over subjective probability dis-
tributions. For these belief states, we define and motivate revision
strategies based on variants of Jeffrey-conditionalization and cross-
entropy minimization, which we illustrate with a simple example.
We conclude the paper with some comparisons and perspectives for
future work.

2 FORMAL BACKGROUND

We assume a finite propositional logical background language L.
This restriction does not affect the conceptual issues addressed in
the paper. L is intended to refer to the external, objective world, as
opposed to the internal, epistemic reality. Let W be the set of propo-
sitional valuations over L and B = 2W be the corresponding boolean
propositional algebra. Propositions are identified with sets of worlds.
Let ProbB be the set of all probability distributions P : B ! [0; 1].

A traditional way to describe the belief structure of an agent has
been to attach probabilities to the propositions he may consider. This



subjective or epistemic probability is assumed to measure his degree
of belief in these propositions, in particular to express his commit-
ment to accept certain bets on their truth. However, it is important to
make a distinction between statistical, objective probability, i.e. rela-
tive frequencies in the real world (e.g. of start-ups making profit after
one year), and epistemic probability, i.e. strength of belief in the mind
of the agent (e.g. of x.com making profit after one year). Probabilistic
belief valuations have several advantages. Their philosophical justi-
fication, their high granularity, and the possibility to directly exploit
them for decision-making, using for instance the maximum expected
utility paradigm.

In some situations, where exact probabilities are unavailable or ir-
relevant, it is sufficient to estimate the degree of (im-)plausibility or
the order-of-magnitude probability of a proposition. In the subjec-
tive context, ranking measures constitute a coarse-grained but viable
alternative to probability valuations [Weydert 94]. For our purposes,
we only need to consider standard ranking measures.

Definition 2.1 (Standard ranking measures)
A standard ranking measure (��-measure) r is a real-valued map
r : B ! [0;1] with r(W) = 0, r(A [ B) = minfr(A); r(B)g,
and r(;) = 1. The conditional measure is given by r(AjB) =
r(A \B)� r(B) for r(B) 6=1, and r(AjB) =1 otherwise.

Ranking measures may be seen as measures of surprise or disbelief.
A very natural interpretation is offered by the order-of-magnitude
probability reading. It sets r(A) = a iff P (A) � "a, where P is a
nonstandard probability distribution and " an arbitrary but fixed in-
finitesimal. Ranking measures generalize Spohn’s natural conditional
functions/�-rankings, which he used for modeling belief and iterated
revision [Spohn 88,90]. Finite standard ranking measures, which are
characterized by their singleton values r(fwg) (written r(w)), are
formally equivalent to real-valued possibility measures with multi-
plicative conditionalization [Dubois and Prade 88].

3 REVISION FRAMEWORK

To begin with, we want to discuss the revision of belief states on
a more general level, abstracting away from any specific epistemic
ordering or representational paradigm. There are four major ingredi-
ents. First, the basic objects of belief, propositions A about the real
world expressed in some object language L. Secondly, the epistemic
states e organizing and structuring beliefs and meta-beliefs. Thirdly,
the information items i able to trigger a revision process. Fourthly,
the revision function ? itself, which for each e and i picks up a re-
vised epistemic state e ? i meant to give a possibly better account of
reality and therefore a better base for decision-making.

Epistemic states can be represented in different ways. In a fully
comprehensive framework, they would have to encode desires and
intentions as well. However, in this paper, we put these considera-
tions aside and focus on the handling of pure belief. What is actually
believed or accepted, the old-fashioned belief set, is only a minor part
of the overall epistemic structure. Among others, there also must be
an epistemic ordering used to measure the strength of belief and to
guide decisions and revisions. Examples are epistemic entrenchment
orders, ranking measures and probability distributions.

Revision may be triggered by internal (thoughts) or external (ob-
servations, communications) information items. It is conceptually
useful to split the overall revision process into two parts. First, the
interpretation and deliberation of the input in the context of e and i,
followed by its translation into an epistemic constraint �, i.e. a set of

epistemic states. Secondly, the update of the original epistemic struc-
ture e by choosing among the admissible candidates – collected in �
– the most reasonable successor state, i.e. e ? i. In the present paper,
we concentrate on the second step, which also has been - implicitly
or explicitly - the focus of most previous research.

Definition 3.1 (Revision system)
A revision system (E;E0; I; ?) consists of a set of epistemic states
E, a subset E0 � E of initial prior states, a class I � 2E of input
sets, and a revision function ? : E � I ! E.

We illustrate this notion with two simple revision systems, which
also allows us to introduce further important concepts.

The first example is Spohn-type revision of ranking measures. Fol-
lowing Spohn’s interpretation, ranking measures are measures of dis-
belief. Obviously, r may only support belief in A if r(A) < r(:A),
i.e. r(:A) > 0. Because plausibility thresholds for belief accep-
tance offer more flexibility, we use a stronger notion of belief ex-
pressed by r(:A) � 1. Let Esp be the set of all ranking mea-
sures r : 2W ! [0;1]. The canonical non-informative prior state
is the uniform ranking measure r0 with r0(A) = 0 for A 6= ;,
which supports only tautological belief. So we set Esp

0
= fr0g.

To accept incoming information represented by A � W , we have
to ensure r(:A) � 1. Hence, the minimal class of input sets is
Isp = fIA j A � Wg, with IA = fr 2 Esp j r(:A) � 1g.
For revision, the idea is to obtain r ?sp IA by uniformly shifting
the A-worlds downwards until one of them reaches 0, and uniformly
shifting the :A-worlds upwards until all of them reach 1, if possi-
ble. If r(:A) � 1, r ?sp IA = r. If r(A) = 1, revision with A is
impossible and we set r ?sp IA = r. Otherwise, r ?sp IA(A) = 0
and r ?sp IA(:A) = 1, whereas the conditional ranking values stay
invariant. That is, for all B �W , r ?sp IA(Bj:A) = r(Bj:A) and
r?spIA(BjA) = r(BjA). Existence and uniqueness are guaranteed.

The second example is probabilistic update based on cross-entropy
minimization. Cross-entropy is a binary function H measuring the
information gained when passing from a prior distribution Q to a
new distribution P .

Definition 3.2 (Cross-entropy)
Let Q;P 2 ProbB. If for all A 2 B, Q(A) = 0 implies P (A) = 0,
the cross-entropy from Q to P is

H(P;Q) =
P

!2W
P (!) log P (!)= logQ(!).

Otherwise, H(P;Q) =1.

We have H(P;Q) � 0 and H(P;Q) = 0 iff P = Q. But H is
not a classical distance function, it violates symmetry and the trian-
gle inequality. Cross-entropy is a well-behaved and well-motivated
relative information measure. In particular, it allows us to define a
distinguished probabilistic update concept which can be character-
ized by a small set of intuitively appealing rationality postulates for
probabilistic revision functions [Shore and Johnson 80]. More pre-
cisely, given some prior distribution Q representing the initial beliefs
and some closed convex set of distributions � determined by the new
evidence, it seems reasonable to stay as uncommitted or unbiased as
possible. This is done by picking up a revised successor belief state
P in � which minimizes the information gain H(P;Q). In fact, if
there is a P 2 � with H(P;Q) < 1, then there is a unique P
minimizing H(P;Q). This gives us the following revision system.
Ece = ProbB, Ece

0 = fP0g, where P0 is the uniform distribution,
Ice is the collection of closed convex subsets of Ece, and ?ce is the
function which associates with Q 2 Ece and � 2 Ice the unique
MCE-model P , if it exists, and otherwise Q.



4 EPISTEMIC STATES

According to the Bayesian perspective, an epistemic state should
be characterized by a single all-encompassing subjective probabil-
ity distribution. However, this looks like a crude simplification of the
real thing. Even if our goal is not cognitive modeling but design-
ing rational agents in the best possible way, it seems unreasonable to
ignore the uncertainty associated with individual probability judg-
ments as well as the impracticality of assigning a single value to
every imaginable proposition. Also we should note that in the real
world, agents have limited epistemic ressources. In particular, the re-
vision formalism may fail to specify a unique valuation, bringing in
additional uncertainty. Therefore, we have to consider valuation sets,
just as in a more qualitative context, we have considered world sets.
A minimal assumption is that any epistemic structure e should deter-
mine an epistemic set Epi(e), i.e. the set of those subjective prob-
ability distributions it considers admissible. This doesn’t mean that
the agent cannot choose a single, coherent probability distribution
for decision-taking purposes. It only means that this step is accom-
panied by a loss of information about the currrent epistemic reality.
But when it comes to revise the epistemic state in the light of new
evidence, the agent should be able to exploit the full epistemic struc-
ture, not only the synoptic decision probability.

Not every valuation set seems to be a reasonable carrier of epis-
temic uncertainty. Consider for instance an epistemic state e support-
ing two distributions P and P 0. If the agent cannot decide by himself
which one is more appropriate - otherwise he would have made his
choice - or which probability to attribute to each one - otherwise
he would have picked up the mixture -, every weighted combination
�P + (1 � �)P 0 for � 2 [0; 1] appears to be equally reasonable
and should therefore be admissible for e. Consequently, each epis-
temic set Epi(e) should be closed under weighted mixtures, i.e. it
should be convex. Convexity has several advantages. In particular,
together with topological closedness, it ensures a unique solution for
consistent cross-entropy minimization. While the convexity assump-
tion looks reasonable for sets of epistemic distributions, it turns out
to be counterintuitive for sets of statistical distributions. For instance,
we may very well believe that a coin has been manipulated in one of
two ways and that the relative frequency of getting head is therefore
either 0.5 or 0.9, but not 0.7 or any value in between. On the other
hand, our degree of belief that the next throw will give us head may
wobble between 0.5 and 0.9 if we feel unable to judge the relative
probability of the different modifications.

However, modeling epistemic states with convex distribution sets
is not the final word. There are at least two reasons for considering
strucures on top of the basic epistemic valuations. First of all, we
may want to exploit the revision history, which is hardly reflected
in the epistemic sets. This information may be irrelevant for current
decisions, but it could be useful for guiding future revisions. Sec-
ondly, we may want to express the plausibility of different epistemic
valuations or corresponding probabilistic assertions.

An obvious generalization would be to consider hyperdistribu-
tions, i.e. probability measures over the basic subjective distribu-
tions. However, these higher-order entities are even more cumber-
some, elusive and hard to grasp than their lower-order counterparts.
Furthermore, the same reasons promoting sets of epistemic valua-
tions, would be valid here as well. And why stopping at this level,
why not hyperhyperdistributions, or sets of them? If there is a need
for higher-order preferences, and we think so, the only sensible way
to avoid this type of infinite regress is to assume a lower granu-
larity for higher levels, i.e. to consider coarser-grained alternatives

to a probabilistic structure over epistemic distributions. This can be
achieved through so-called hyperrankings, a new epistemic valuation
concept which marries our representational needs with our demand
for simplicity.

Hyperrankings are special ranking measures r over the space of
subjective probability distributions ProbB which take into account
some peculiarities of epistemic probability, e.g. the role of convex-
ity. Those epistemic distributions with maximal plausibility, i.e. rank
0, are assumed to form the epistemic set Epi(r). The epistemic dis-
tributions with lower plausibility only come into play when revision
has to occur. Hyperrankings can be specified from the outside, but
we see them primarily as byproducts of the revision process, partly
reflecting its history. Similarly to epistemic sets, hyperrankings also
have to meet specific requirements. In particular, weaker plausibility
thresholds – i.e. r 2 Epi�(r) iff r(P ) � � (� > 0) – should also
define convex epistemic sets over hyperrankings. But we do not ask
for topological closure.

Definition 4.1 (Convex ranking measures)
A ranking measure r : 2ProbB ! [0;1] is called convex iff
fP j r(P ) � �g is convex for each � 2 [0;1].

There is another substantial condition. If P is considered epistemi-
cally possible, i.e.R(P ) 6=1, we should also allow any P0 which is
conditionalization accessible from P , i.e. which can be reached from
P by Jeffrey-conditionalization. The reason is that we do not want
to preclude any consistent future evidence. That is, epistemic possi-
bility should be closed under conditionalization accessibility. This is
equivalent to the following.

Definition 4.2 (Conditionalization accessibility)
P 0 2 ProbB is conditionalization accessible from P 2 ProbB iff
for all A 2 B, P (A) = 0 implies P 0(A) = 0.

In addition, for the sake of simplicity and because ProbB is infinite,
we also stipulate a smoothness condition which states that the rank
of a set already has to be assumed by one of its singletons.

Definition 4.3 (Hyperranking)
A ranking measure r : 2ProbB ! [0;1] is called a hyperranking iff
r is convex, fP 2 ProbB j r(P ) < 1g is closed under condition-
alization accessibility, and r(A) = minfr(P ) j P 2 ProbBg.

Hyperrankings generalize the epistemic set concept by adding an
implausibility valuation over all subjective probability distributions.
The corresponding epistemic set is Epi(r) = fP j r(P ) = 0g.
For decision-theoretic purposes, Epi(r) is the only relevant entity.
The other distributions and their hyperranks will only become rele-
vant in the context of revision. The need for sets of hyperrankings
to express additional uncertainty is less pronounced because ranking
measures are already characterized by an inherent vagueness linked
to the min-condition. The following result is quite useful.

Theorem 4.4 (Epistemic possibility domain)
If r is a hyperranking, fP 2 ProbB j r(P ) < 1g has the form
fP 2 ProbB j P (A) = 0g for some A 2 B.

5 EPISTEMIC DYNAMICS

We now turn to our main task, the design of suitable revision sys-
tems for hyperrankings. Let Ehy be the set of all hyperrankings over
ProbB and Ehy

0
= fr0g, r0 being the uniform hyperranking. What



about the input space Ihy? As for MCE-revision, we assume that the
external evidence can be translated into a closed convex � � ProbB.
According to the general definition, � then is meant to determine a
suitable input set I� 2 Ihy collecting the candidate hyperranking
updates. If the new evidence is considered epistemically possible,
i.e. r(�) < 1, revision should verify the success postulate, that is
Epi(r?I�) � �. Inconsistent evidence, i.e. � with r(�) =1, may
be ignored. So, let I� = fr 2 Ehy j Epi(r) � �g. Then, within
our formal framework, we could set Ihy = fI� j � � ProbB;�
closed, convexg. However, given the close correspondence between
� and I�, we stipulate Ihy = f� � ProbB j � closed, convexg.
The most straightforward revision function ?hy : Ehy�Ihy ! Ehy

for hyperrankings is Spohn-type revision extended by a convexifica-
tion step. This gives us the following definition.

Definition 5.1 (Convex Spohn revision)
Let r 2 Ehy and � 2 Ihy. Then r ?csp � is defined to be the unique
hyperranking r0 such that for all � 2 [0;1], fP j r0(P ) � �g is
the smallest convex superset of fP j (r ?sp �)(P ) � �g.

We may illustrate ?csp with a small example. Suppose W =
f!x; !y; !zg, i.e. B has only three atomic propositions. Then ProbB
can be represented by f(x; y; z) 2 R3 j 0 � x; y; z; x+y+z = 1g.
We may imagine hyperrankings restricted to singletons as functions
with global, but without local minima. Let �x�0:5 = fP j P (!x) �
0:5g and �x=0 = fP j P (!x) = 0g, which are closed convex. First
we revise with �x�0:5. Let r1 = r0 ?csp �x�0:5. Then r1(P ) = 0
for P 2 �x�0:5 and r1(P ) = 1 otherwise. This is also the result we
would have gotten with ?sp.

Next we revise r1 with �x=0. Here ?csp differs from ?sp because
convexification flattens the ranks in �x>0. Let r02 = r1?sp�x=0. We
obtain r02(P ) = 0 over �x=0, r02(P ) = 1 over �x�0:5, and r02(P ) =
2 elsewhere. Of course, r02 = r1 ?sp �x=0 is no longer convex. Let
r2 = r1 ?csp�x=0. Because each P 2 �0:5>x>0 can be written as a
linear combination of some P1 2 �x�0:5 and P2 2 �x=0, we have
r2(P ) = 0 over �x=0, but r2(P ) = 1 over the whole �x>0.

Convex Spohn revision is the basic ingredient of our revision
strategies for hyperrankings. It is natural, easy to handle, and justifi-
able by minimal information considerations transferred to the rank-
ing context. However, it is also a very conservative approach which
we may want to strengthen by exploiting some probabilistic minimal-
distance concept, e.g. cross-entropy. The idea is to give priority to
those distributions which are closest to the initial epistemic set. Pre-
sumably the most appropriate and well-behaved distance notion for
our epistemic purposes is the relative information measure cross-
entropy H . To exploit it, we have to extend H to sets of distri-
butions and introduce a suitable binary projection function #. For
P 2 ProbB and �;�0 � ProbB, let

� H(�0;�) = inffH(P 0; P ) j P 2 �; P 0 2 �0g,
� � # �0 = fP 0 2 �0 j H(P 0;�) = H(�0;�) <1g.

H(�0;�) indicates the greatest lower bound to possible distances
between elements of �;�0. � # �0 picks up those elements of
�0 which are closest to �, assuming existence. If �0 is closed and
H(�0;�) <1, then � # �0 6= ;. If �0 is also convex, fPg # �0 is
a singleton. Unfortunately, even for closed convex �, not very much
is known about � # �0. In particular, it doesn’t need to be convex.

Based on these definitions, as a prelude to hyperranking revision,
we want to find a reasonable probabilistic update function � for
closed convex �;�0 � ProbB. We may distinguish between cau-
tious, pointwise strategies, which are looking at individual distribu-
tions, and more adventurous, global strategies, which are looking at

distribution sets. The most cautious procedure is pointwise projec-
tion �p, which is close to Jaeger’s approach for direct inference from
a statistical knowledge base [Jaeger 94]. The idea is to assume equal
importance for all the distributions in �, independently from �0, and
to take the convex topological closure of all the projections of P 2 �.

� �p �
0 = conv(

S
ffPg # �0 j P 2 �g) if H(�0;�) <1,

otherwise, � �p �0 = �. In the context of cross-entropy projection,
this is the largest possible choice for � � �0, i.e. the weakest update.
Unfortunately, there is a serious problem with pointwise projection.
In fact, �p fails to satisfy the conservation principle, i.e. � \ �0 6= ;
does not enforce � �p �0 = � \ �0, even for closed convex �;�0.
That is, we cannot simply conjoin consistent epistemic probability
constraints, which is hardly acceptable. To see what may go wrong,
consider two closed halfspaces �1;�2 � ProbB with a non-empty,
sufficiently sharp-angled intersection. Then we may find a boundary
point P of �1 whose cross-entropy projection fPg # �2 does not
belong to �1 \ �2.

Consequently, we prefer a stronger approach, global projection �g .
It picks up the overall �-closest elements of �0 and takes the convex
topological closure. That is,

� �g �
0 = conv(� # �0) if H(�0;�) <1,

otherwise, � �g �0 = �. Obviously, �g verifies conservation if �;�0

are closed convex. �p and �g are equivalent if � is a singleton.
Now, we have all the ingredients – in particular ?csp and �g – for a

powerful hyperranking revision concept ?hy . But these components
can be mixed in different ways. Given a hyperranking r 2 Ehy and a
closed convex input set � 2 Ihy, the basic idea is, first, to use r, ?csp
and �g to determine a preferred closed convex 	 � �, secondly, to
realize convex Spohn revision on r and 	, which then should give us
r ?hy �. That is, the interesting part is to get from � to 	.

Depending on whether we give more importance to the plausibil-
ity ordering fixed by r or to the informational closeness to Epi(r),
we may choose one of two major strategies. If the ranking is consid-
ered more relevant, we start with ?csp and globally project Epi(r)
onto the convex closure of the most plausible part of �, namely onto
conv(Epi(r ?csp �)). If cross-entropy minimization is considered
more relevant, we directly project Epi(r) onto �, exploiting r only
afterwards, through the main application of ?csp. Interstingly, these
approaches, called the conditioning-first resp. projection-first strat-
egy, may provide contradictory results, i.e. the resulting epistemic
sets may be disjoint. So, we have to choose.

Because the structure of the prior hyperranking r seems to be more
specific and relevant than the information distance to the epistemic
set Epi(r) – otherwise r should have reflected this right from the
beginning –, we prefer conditioning-first. That is, we proceed in three
steps. First, we use convex Spohn revision to determine with r the
most plausible closed convex subset � of the input set �. Secondly,
we globally project Epi(r) onto �, shrinking it to �0. Then we apply
convex Spohn revision with input set �0, giving us r ?hy �.

Definition 5.2 (Conditioning-first hyperrevision)
Let r be a hyperranking and � � ProbB be closed convex. Then

r ?hy � = r ?csp (Epi(r) �g conv(Epi(r ?csp �))).

The corresponding revision system is (Ehy; Ehy
0
; Ihy; ?hy).

We may use the previous example to illustrate our hyperrevision con-
cept. So, we want to compute (r0 ?hy �x�0:5) ?hy �x=0. We start
with r0 ?hy �x�0:5 and evaluate



r0 ?csp (Epi(r0) �g conv(Epi(r0 ?csp �x�0:5))).

First, we have Epi(r0) = ProbB and conv(Epi(r0?csp�x�0:5)) =
�x�0:5. Because only the elements of �x�0:5 have minimal, i.e.
0 cross-entropy distance to �x�0:5, 	1 = ProbB �g �x�0:5 =
�x�0:5. It follows that r0 ?hy �x�0:5 = r0 ?csp �x�0:5 = r1 with
r1(P ) = 0 for P 2 �x�0:5 and r1(P ) = 1 otherwise.

Next, we revise r1 with �x=0. We have Epi(r1) = �x�0:5

and conv(Epi(r1 ?csp �x=0)) = �x=0. For global projection,
we first observe that the smallest informational distance occurs be-
tween P1 2 �x�0:5 represented by (0:5; 0:25; 0:25) and P2 2
�x=0 determined by (0; 0:5; 0:5). Therefore 	2 = Epi(r1) �g
conv(Epi(r1 ?csp �x=0)) = �x�0:5 �g �x=0 = fP2g. Accord-
ingly, r1 ?hy �x=0 = r1 ?csp	2 = r2 with r2(P2) = 0, r2(P ) = 1
for P 2 conv(�x�0:5 [ fP2g)� fP2g, and r2(P ) = 2 otherwise.

Note that if we start with �x=0, we obtain r0 ?hy �x=0 =
r0 ?csp �x=0. But then, hyperrevision with �x�0:5 is no longer pos-
sible because H(�x�0:5;�x=0) =1. With our definitions, we can-
not retract epistemic impossibility, i.e. P (A) = 0. To avoid this, we
could drop the <1-restriction in the definition of �g .

6 COMPARISONS

Because the revision of epistemic states exploiting second-order val-
uations has been hardly addressed in the literature, ?hy is a bit more
difficult to position. The only competitors are those mentioned in the
text, namely convex Spohn revision ?csp and the projection-first vari-
ant of hyperrevision ?prhy discussed above. Convex Spohn revision is
the most robust approach. It only exploits informational closeness
on the ranking level, not in the context of individual distributions.
But it is too cautious if the epistemic set of the prior hyperranking is
just a singleton. In particular, convex Spohn revision does not con-
stitute an extension of the well-motivated MCE-revision procedure.
Projection-first hyperrevision doesn’t share this drawback and is also
conceptually simpler than standard, i.e. conditioning-first hyperrevi-
sion. However, in addition to its lower “specificity”, as explained in
the text, it may also conflict with convex Spohn revision in the sense
that Epi(r ?prhy�)\Epi(r ?csp�) = ;. Of course, given the current
absence of rationality postulates for hyperrevision procedures, these
considerations about ?hy and its competitors are still preliminary.

To complete our picture, we may also have a short look at the pos-
tulates P1�7 discussed by Grove and Halpern [98] for revision func-
tions Upd updating sets of distributions � by propositions A. We can
translate their entities into our framework by setting r� = r0 ?sp �
and �A = fP j P (A) = 1g. That is, we investigate the behaviour
of Upd(�; A) = r� ?hy �A. P1 directly follows from our defini-
tions. P2, which states invariance under coarsening of B, is also sup-
ported. P3, commutativity, already fails for Spohn-type revision. P4,
which says that redundant information doesn’t change anything, ap-
plies too. P5, which derives the revision of a set from the revision
of its elements, is rejected (see global projection). P6, under the ver-
sion where it requires that a singleton produces a singleton, or an
inconsistency, is also valid. P7, a non-triviality postulate, is satisfied
as well. Of course, these are only partial results about principles not
designed to deal with hyperrankings or similar structures. It is an
important task for the future to look for more specific postulates, or
maybe characterization results, for hyperrevision mechanisms.

7 CONCLUSIONS

A major goal of this paper has been to give a hint at the actual com-
plexity of more realistic – in the sense of representational power, not

in the sense of computational efficiency – epistemic models and their
dynamic transformation. To begin with, we have sketched a general
revision framework and discussed the nature of epistemic states. In
particular, we have introduced hyperrankings, a new type of epis-
temic structures based on convex ranking measures over subjective
probability distributions. We also have proposed a new revision strat-
egy, called hyperrevision, which combines convex Spohn revision
with cross-entropy minimization. Our approach tries to find a middle
ground between representational expressivity and pragmatism, and
may offer a more manageable way to handle higher-order uncertainty
and preferences. Of course, this is only a first step.

Conceptually speaking, the present account is mainly a powerful
extension to existing, more restricted proposals. There are many is-
sues which have not been addressed. For instance, the handling of
independence information, propositional algebras over a first-order
language, and the relation between statistical and epistemic proba-
bility. We have also dared to ignore the computational issues. Com-
puting the full revised hyperranking, or even the epistemic set, after
each revision step appears to be impractical. Therefore, approxima-
tion methods and the representation by revision sequences (with par-
tial evaluation on demand) could be useful. On a more general level,
what is missing is a better understanding of the first part of the re-
vision process, the step from the real input to some constraint over
epistemic distributions. Furthermore, we have to be aware of the fact
that belief revision is only a relatively small - although very impor-
tant - part of the bigger task to model cognitive agents in a realistic
way. The handling of information is rarely a purely passive process
where incoming inputs are just evaluated and integrated. In practice,
agents are actively seeking informations to diminish uncertainty. In
addition, beliefs have a certain purpose, namely to help solving prob-
lems or reaching specific goals. Decision-taking not only requires
belief valuations, but also suitable preferences or utility valuations,
which have to be updated as well. It is only in this larger context that
the real value of revision strategies will become visible. However,
before we can take this road, we need to master the various tools for
pure belief revision, in particular hyperrevison procedures.
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