
Modeling Java Programs for Diagnosis
�

Cristinel Mateis and Markus Stumptner and Franz Wotawa �

Abstract. A key advantage of model-based diagnosis is the abil-
ity to use a generic model for the production of system descriptions
that can be used to derive diagnoses for differently structured in-
dividual systems from a domain. This advantage is nowhere more
apparent than in the software error diagnosis (or debugging) area,
where given a model, system descriptions can be automatically de-
rived from source code. However, effective models for diagnosing
programs have so far been limited to special-purpose languages. We
describe a value-based model for Java programs that enables us to
explicitly deal with imperative program execution (including loop
execution), and compare the results to those obtained by using pro-
gram slicing, a traditional technique from the software debugging
community, and a simple dependency-based model for Java.

1 Introduction

A key advantage of model-based diagnosis is the ability to use a
generic model for the production of system descriptions that can
be used to derive diagnoses for differently structured individual sys-
tems from a domain. This advantage is nowhere more apparent than
in the software error diagnosis (or debugging) area, where given a
model, system descriptions can be automatically derived from source
code. However, the nature of software debugging as a design ac-
tivity means that unlike hardware diagnosis, neither complete nor
structurally equivalent specifications of the intended code behavior
are available, making the task significantly harder than with hard-
ware diagnosis. Nonetheless, advantages can be gained over other
debugging methods, which labor under at least same restrictions.
The model introduced in this paper is intended to be used for de-
tecting functional faults in Java programs. For simplicity reasons we
focus on a significant subset of Java. The subset comprises classes,
methods, assignments, conditionals, and while-loops. We illustrate
our approach using the small Java program from figure 1. The demo
method comprises a conditional, assignments and a while-loop state-
ment. Assuming that after execution, the value of variable i should
be the same as the value of stop, we easily can prove that demo must
have a bug. Say demo(1,2) is called. Then we get i=3 after method
execution which obviously contradicts our assumption that i should
be equal to stop after execution. If we know nothing about the ex-
pected values of start and stop, then we can not distinguish whether
the bug is located within the conditional, the assignment from line 6,
or the loop statement. If the expected values are given, e.g., start=1
and stop=2, the bug can be only located in line 6, or within the while-

�
This work was partially supported by the Austrian Science Fund project
P12344-INF and project N Z29-INF.�
Technische Universität Wien, Institut für Informationssysteme and Ludwig
Wittgenstein Laboratory for Information Systems, Favoritenstraße 9–11, A-
1040 Wien, Email: � mateis,mst,wotawa � @dbai.tuwien.ac.at. Authors are
listed in alphabetical order.

public class Examples �
public void demo (int from , int to)�

int start , stop , i ;
1. if (from � to) �
2. start = from ;
3. stop = to ;�

else �
4. start = to ;
5. stop = from ;�
6. i = start ;
7. while (i �
	 stop) �
8. // Do something . . .
9. i = i + 1 ;

���
. . .
�

Figure 1. A small Java program

loop, because the assignment determines the start value of i and the
while-loop the number of iterations influencing the value of i

We have previously described the use of a simple model of a
Java program that is based on recording dependencies between vari-
ables [9]. This model delivers the result above, i.e., that the assign-
ment (line 6) may be responsible for the bug, in addition to the while
loop (line 7 to 9). The model introduced in this paper improves the
result by providing more informations about the bug and how to re-
pair it, as a result aiding the programmer in finding and fixing bugs
more quickly. It has the potential to lead to an automatic debugger in
the future. Similar to [9], we convert the Java program into a logical
description that afterwards is used together with a model-based di-
agnosis engine [11, 3] for computing diagnoses, i.e., finding possible
bug locations given an observed incorrect execution outcome. In con-
trast to [9], the model is not a dependency model but a value-based
one, and includes models of faults which directly map to repair sug-
gestions, e.g., replacing condition i � = stop in line 7 with i � stop
(obviously leading to the correct version of demo).

2 The Model

The key of using model-based diagnosis to debugging lies in devel-
oping a component-connection model for programs. Such a model
must be automatically derived from the source code. Further, a value-
based model has to represent the semantics of the programming lan-
guage, i.e., given the same inputs, both program execution and the
corresponding model must lead to the same outcome. The model
introduced in this section represents statements and expressions as
components and variables as connections. This choice allows to de-
tect functional faults but is not recommended for locating structural
faults, in other words, completely missing statements in a program,
or structural faults that occur whenever a wrong variable was used,
are not explicitly covered in the model. Figure 2 gives the Java subset
considered. Although it does not comprise the complete language,

Program ::= Classes

Classes ::= Class Classes
���

Class ::= class Id [extends Id �] � ClassStmnts
�

ClassStmnts ::= ClassStmnt ClassStmnts
���

ClassStmnt ::= VariableDecl;
�
MethodDecl

VariableDecl ::= Type Id

Type ::= int
�
bool

�
float

�
Id ���	��
�

MethodDecl ::= Type Id (FormalParList) � JavaStmnts
�

FormalParList ::= VariableDecl FormalParListRest
���

FormalParListRest ::= , VariableDecl FormalParListRest
���

JavaStmnts ::= JavaStmnt JavaStmnts
���

JavaStmnt ::= Assignment
�
Selection

�
While

�
MethodCall

�
ReturnStmnt

Assignment ::= Id = Expr;

Expr ::= Id
�
Const

�
MethodCall

�
(Expr)

�
Expr Op Expr � �

new MethodCall

Selection ::= if (Expr) � JavaStmnts ������� � [else � JavaStmnts ���	
�� �]
While ::= while (Expr) � JavaStmnts

�
MethodCall ::= Id (ActualParList)

�
Id ���	��
�
 .Id (ActualParList)

ActualParList ::= Expr ActualParListRest
���

ActualParListRest ::= , Expr ActualParListRest
���

ReturnStmnt ::= return Expr;

Figure 2. Java subset used for the model

it allows the use of object-oriented features such as dynamic bind-
ing and inheritance. Recursive functions, interface declarations, and
some other language constructs are not considered.

2.1 Computing models

The compilation of programs into models is static from the debug-
ger’s point of view, i.e., it coincides with the actual compilation or
initial execution of the program. The compiler successively computes
models for each method of a class similar to the conversion of pro-
grams into byte-code. The obtained model can be divided into two
parts. The structural part comprises the connections, components,
and the connectivity relations. The behavior part defines the behavior
of components using a logic-based language, e.g., first-order logic.
While the structural part depends on the methods to be converted, the
behavior part is determined by the language semantics and is there-
fore independent of a given program. Before we give the logic de-
scription of the behavior, we first informally introduce an algorithm
for converting Java programs into components and connections.

In converting Java programs to a model, the key features of the
Java program’s classes are their variables and methods. Variables are
divided into class and instance variables. While two instances of a
class have separate sets of instance variables, they share the same
class variables. Methods may introduce new local variables and con-
sist of statements. All variables, regardless whether they are class,
instance, or local, are mapped to connections. For each variable, a
connection is created in the initialization phase of the compilation
process. Whenever a variable occurs in an expression, this connec-
tion is used for connecting to the corresponding component. Each
time a variable is used as target in an assignment statement, a new
connection is created and used until a new connection arises. Con-
sider for example the following program fragment:

1. i = 1;
2. o = i + 1;
3. i = o + 1;
4. x = i - 2;

Compilation starts with line 1 and converts the first assignment
until line 4 is reached. Because � in line 1 is used as target, a new
connection is created. This connection is used in line 2. In line 3,
again a new connection for � is created that is used in line 4.

The conversion of variables to connections as described above is
well defined whenever the sequence of statements to be executed is
known in advance. This restriction does not require knowing which
branch of a conditional statement will be executed, but it excludes
Java programs using parallel processes.

The statements and expressions used in a Java method are mapped
to components as follows:

� Assignments are mapped to assignment components with two
ports, one input port and one output port. The input port is re-
lated to the evaluation of the expression on the right side of the
assignment statement and is connected to the output port ��������� �
of the corresponding expression component (the expression com-
ponent is introduced below). The output port is related to the target
variable of the assignment.� Conditionals are mapped to conditional components with a vary-
ing number of ports. An input port, !�"�#%$, is connected from the
output port �&�'�����(� of the component of the selection conditional
expression. For every variable) used as target in an assignment
occurring in either the �+*��,# or the �-�.�,� branch, three ports are
generated: �+*��,#0/ , �-�.�,�'/ , and "'�1��/ . The input port ��*��,#2/ (�-�.�,�-/)
is connected from the output port dealing with) of the last state-
ment from the ��*��,# (�-�.�,�) branch which modifies) . The output
port "'�1��/ is connected to a new connection mapped to) . This
connection is used in subsequent statements.� While loops are mapped to loop components with several input
and output ports given by the variables used within the loop or
the conditional. For all variables 3 that are used in an expression
a port �4#%5 is assumed. Similarly, each variable 3 such that the
value of 3 is changed by a statement or within a method call, has
an associated port "'�1� 5 . In addition to ports, the conditional and
the statements block of the loop are converted separately, lead-
ing to two different diagnosis systems: (687:9 , ;=<?>A@89) for the
conditional and (6B7:C , ;=<?>A@8C) for the block. This conversion
procedure is the same as for statements described herein. We as-
sume the following connections are used in 687 9 and 687 C . For
each variable 3 used in the conditional, we have a connection ! 5
in 687:9 . In addition, 6B7D9 has a connection !E"'#%$ for delivering
the value of the condition. For each variable 3 we assume a con-
nection F��G5 if 3 is used as input in the statements block, and a
connection FE" 5 if used as output. Note that the set comprising all
FE" 5 is equal to the set of all "��H� 5 , if no variable is changed within
the condition. This assumption is valid for our model.� Return statements are mapped to components with one input port
and one output port. The input port is related to the evaluation
of the returned expression and a connection runs to it from the
output port �&�'�����(� of the corresponding expression component.
The output port is related to an auxiliary variable, ���,�����'# , which
takes the value of the returned expression evaluation.� Method calls of type void are calls of methods which do not re-
turn any value. Instead they modify external variables through side
effects (where ”external variables” refers to instance variables of
the object for whom the method is called, and variables derived
from the actual parameters of reference type). Such method calls
are statements on their own and are mapped to method call com-
ponents >I; with several input and output ports. The input ports
are related to (i) the global variables used in the body of the called

method, and (ii) the actual parameters of the method call which
induce variations of variables visible outside the method call. The
output ports are related to all global variables used in the body of
the called method and all variables derived from the actual param-
eters of reference type (e.g., all attributes) � � �G�-��$ of a variable)
of reference type are variables derived from)) which are modi-
fied inside the body of the called method. Other output ports are
related to variables derived from objects created inside the called
method which are accessible in the environment where the method
call occurs; note that these variables are newly introduced in the
model, i.e., they did not exist before the method call.
If � is the called method, the component > ; corresponding to
the method call of � can be obtained from the component-based
model > of � by substituting in > all ports related to the global
variables and formal parameters with the ports related to the corre-
sponding actual global variables and actual parameters. After sub-
stitution, the ports of > coincide exactly with the ports of > ; .� Expressions are constructs which are used in statements but which
cannot be statements on their own (except function calls, but usu-
ally, their return values are always used in statements). Expres-
sions are mapped to expression components which may have sev-
eral input and output ports (at least one of each). The expressions
are always evaluated to a final result which is then used in the
statements where the expressions appear (usually an assignment
or a selection or loop condition). An output port, �&�'�����(� , of the
expression component is related to the final result. In order to eval-
uate the expressions, the relations between the operands of the ex-
pressions (which in their turn may be other expressions, constants,
variables, function calls, etc.) are evaluated, hence the variables
appearing in the operands of the expressions can be viewed as in-
puts of the expressions. The input ports of the expression compo-
nent are related to these variables. Other input ports are related to
global variables which do not appear directly in the operands but
are used by function call operands inside the body of the called
function. Other output ports are related to variables which are de-
rived from the actual parameters of function call operands and are
modified through side effects by the called function.
There are three fundamental types of expressions.
Constants and variables are mapped to components with two
ports. The input port is related to the corresponding constant
(resp., variable). The output port is related to an auxiliary vari-
able, ���'�����(� , whose value coincides with the value related to the
input port.
Operators are mapped to components with two input ports and
one output port. The input ports are connected from the output
ports ���'�����(� of the components corresponding to the two expres-
sion operands. The output port, ���'�,���(� , is related to the evaluation
of the relation between the two operands induced by the operator.
Function calls and constructor invocations are mapped to com-
ponents �?; which are similar to the method call components
>I; , but in addition, they have a further output port, ��������� �

Consider the example program Examples.demo from the Intro-
duction. The conversion procedure described above returns the
component-connection model depicted in figure 3.

The time for performing diagnosis is of course (among other pa-
rameters) dependent on the number of components. Therefore, an
upper-bound of the number of created components for a specific pro-
gram is needed. Assume that > denotes the number of method calls
occurring in the method to be converted, let 6 be the maximum num-
ber of statements, and � be the maximum number of expressions in

from<to

start=from

stop=to

start=to

stop=from

then_start

cond

out_start
out_stop

if (from<to)...

i=start

while(i<=stop)...

C1 C6

C4

C3

C2

C5

COND1

from
to

stop
start

ithen_stop

else_stop
else_start

out_iCOND

i=i+1

BLOCK

i<=stop

C7

in_i

in_stop

Figure 3. The component connection model for Examples.demo

one method. Then the number of created components must be less
than or equal to >����G6
	��� . Taken into account the average perfor-
mance of modern diagnosis algorithms [5, 13], where systems with
up to 10.000 components can be diagnosed within seconds, we esti-
mate that the approach can be used for debugging of small and mid-
size programs (several k-Byte of source code) in reasonable time.

2.2 Behavior

In the previous section we have shown how the component-based
model of a given Java program is generated. In particular, each Java
construct is transformed to a corresponding component. In order to
detect possible faulty statements of the Java program, a description
of the program behavior is needed. In this section we show how the
behavior description of each component from the component-based
model is generated. The predicate �����G;�� is used to indicate that a
component ; is behaving abnormally. A correctly behaving compo-
nent ; is therefore described by �������G;�� .
� Assignments (Assignment ::= Id = Expr;)

�������G;���� "��H���G;���� �G#��G;��
where the input port �4#��G;�� is connected to the output port
�&�'�����(�����)���� � of the component corresponding to �?) ��� , and the
output port "'�1���G;�� is related to the variable ! $.� Conditionals (Selection ::= if (Expr) " Stmnts #�$&%('*) [else "
Stmnts %(+-,.%/)])
For each variable 3 that is modified in at least one of the selec-
tion branches then and else, the following behavior description
constructs are generated.
�������G;��10 !E"'#%$2�G;���� ��������� "��1��53�G;���� ��*��,#%53�G;��
�������G;��10 !E"'#%$2�G;���� �54 �.�,��� "'�1� 5 �G;��6� �-�.�,� 5 �G;��

where the input port !E"'#%$2�G;�� is connected from the output port
�&�'�����(�����)���� � of the component corresponding to the selection
condition �)���� , and the input port ��*1�-#%53�G;�� (resp., �-�.�,�-5�G;��
is connected from the output port related to 3 of the compo-
nent corresponding to the last statement of 6 �.� #����7#�$&%(' (resp.,
6 �(� #���� %.+-,(%) which modifies 3 .� While loops (While ::= while (Expr) " JavaStmnts))
The behavior corresponds to the intuitive expectation one would
have of a loop construct. Whenever the diagnosis system of the
conditional allows to derive true for the condition, the diagnosis
system of the block statement is used to derive new values for
the variables. The values for every loop iteration are stored in an
auxiliary variable 8:95 where 3 denotes the variable (either used as
input or output) and ! the current number of iterations. At the be-
ginning of the computation, the initial values are set using the val-
ues from the ports �4# 5 . At the end of the computation, the values

are set equal to "��1�+5 . Formally, the behavior is given as follows:� �������	��
���������� ���	� 	����� ���	����������� !� ���	� 	��#"%$ �� ���	���� �	&('�) �+*)+,.-0/�12)+,+3 � -�4 "%$ � � -� ���	� 	�� -05 � �����(�677
8

� ��9;: � �����=< � � ���>��:�� � :@?A��B�CED � ����� �< �F� -� ���	� 	HG � ���	� � I ?KJL� � � 	�G ���=M ���	� 	 !NO�QP �SR�QTU&()S,+3 �V9W: , �����=< � � ������:>� � :@?A��B�CED , ����� � <
��� -� ����� 	HX ��� ���	� � I ?KJL��Y � � 	Z� -05 T ����� 	HX ��T ���	�[�!\

]_^^
` �

67
8

�!��9;: � �����=< � � ���>��:>� � :a?b�	B�CED � ���	� � <
��� -� ����� 	HG � ����� � I ?KJ	� � � 	ZG ���=M ����� 	ZcQdfe�g P �[�h i�jlk � j � Y����9;: � ���	�=< � � ������:>� � :a?b�	B�CED � ���	� � <

���_m� ����� 	HG � ����� � I ?KJ	� � � 	G ���=M ����� 	ZcQdfe�g P �!�!�nRoCp� I 	 Y
] ^
` \

Here, q ; denotes the variables used in the conditional expres-
sion, q � ! (q� <) the variables used as input (output) of the
block. Of the five conjunctive terms in the definition above, the
first two describe the entry and exit mappings, respectively. The
third describes the step from one iteration to the next; the fourth,
a positive test followed by continuation of the loop; and the last a
failure test of the loop condition, i.e., termination of the loop.
In addition to the correct behavior, we specify a fault behaviorr "�" � �G;ts�> � 3 � setting the number of iterations to > � 3 :uS�O�wv ���	xyCE� I ��
 ���������� ���	� 	����� ���	����������� !� ���	� 	��#"%$ �� ���	���� �	&('�) �+*)+,.-0/�12)+,+3 ��-�4 "%$ � � -� ���	� 	�� -05 � �����(�� � -�4 "t$ � � TU&_)�,+3 ��9;: , �����[<

� � ������:>� � :z?{�	B�CED , ����� � <
�F� -� ���	� 	HX ��� ���	� � I ?lJ	��Y � � 	Z� -w5 T ���	� 	HX �FT ���	�!� \[\

Assuming an example run for a given test case that should result in
five iterations of the loop ; ,

r "'" � �G;ts0| � and
r "'" � �G;ts2} � would

both be examples of fault modes for the loop that describe an in-
correct number of iterations.� Return statements (ReturnStmnt ::= return Expr;)
�������G;���� �����+���'#��G;���� �4#��G;��
where the input port �G#��G;�� is connected to the output port
���'�,���(�����)���� � of the component generated for �?) ��� , and the out-
put port �&��������#��G;�� is related to the returned auxiliary variable.� Method calls support two variants.

– MethodCall ::= Id (ActualParList)
We assume that the behavior � 90~ of the called method Id has
already been computed, hence recursion is not supported. Then,
for each rule ����� � �b� � 92~ , the behavior description con-
struct generated is: �������G;��/0 �t� � �l� , where �%� (resp.,
�l�) is obtained from � (resp., �) by substituting all formal
parameters and global variables with the corresponding actual
parameters and global variables.

– MethodCall ::= Id � + �&,(, .Id (ActualParList)
This case is similar to the previous one, the only difference con-
sists of the origin of the actual global variables which substitute
the formal ones. In the previous case, the actual global vari-
ables are the instance variables of the object for whom the cur-
rent component-based model is generated. In the current case,
the actual global variables are the instance variables of the ob-
ject Id � + �&,(, . Note that since the model is value-based, the actual
class of the object in the variable Id is available at debugging
time and therefore the correct called method will be used to
for the model. This feature handles dynamic binding and also

inheritance (since for each class the inherited methods can be
statically precomputed).

� Expressions are subdivided according to the three categories men-
tioned in the section on the structural part of the model.

– Constants and variables
�������G;���� ���'�,���(���G;���� �4#��G;��
where both the input port �4#��G;�� and the output port �&�'�����(���G;��
are related to the constant (resp., variable).

– Operators (Expr ::= Expr � Op Expr �)
�������G;���� ���'�,���(���G;���� �4# � �G;�� </� �G# � �G;��
where the input ports �G# � �G;�� and �4# � �G;�� are connected from
the output ports ���'�����(�����)��1� � � and ���'�,���(�����)���� � � of the
components corresponding to �)���� � and �)���� � , respectively,
and the output port �&�'�����(���G;�� is related to the auxiliary vari-
able whose value is the result of the evaluation of the operator
</� with the operands ���'�,���(�����)���� � � and ���'�����(�����)��1� � � .

– Function calls and constructor invocations
If � is the called function (resp., invoked constructor) and
> is the behavior description of � , the behavior description
construct of the function call (resp., constructor invocation) of
� is obtained from > by using the same conversion mecha-
nism previously presented for the behavior description of (void)
method calls and by substituting the auxiliary variable �����+�1��#
with the auxiliary variable ���'�,���(� .

3 Debugging

In this section we will use the model for debugging the Exam-
ples.demo program from figure 3 and show how use of the model
results in improvements when compared with the outcome of a
dependency-based model [9]. We assume that before executing
demo, we have from = 1 and to = 2. After program execution we
expect to obtain start = 1, and stop = i = 2, but it can be easily seen
that program execution leads to i = 3. We now examine the effects of
using the different models in the debugging process.

Using only dependencies between variables as in [9], we see that i
depends on start and stop (both of which have correct values). There-
fore, the conditional statement and its sub-statements (line 1 to 5)
cannot be the source of the faulty behavior. Only the assignment
(line 6) and the while-loop (line 7 to 9) remain as diagnosis candi-
dates. Because of the abstract representation used by the dependency
model, almost no hints can be given to the user to distinguish be-
tween the two diagnoses, except that he or she should look first at the
outcome of the assignment. Based on this information, an additional
ranking for diagnosis discrimination can be delivered by a measure-
ment selection algorithm.

Using the value-based model presented in this paper provides
much richer information for discriminating diagnoses. Using the
same specification as above, our value-based model allows to derive
the following (minimal) diagnoses: "7�����G;A}��) , " �����G;{� �) ,

and " r "'" � �G;{��s��7�) . As it happens, the first two diagnoses give no
hint to the fault. They only state that the assignment and the while-
loop are candidates. The last diagnosis, on the other hand, provides
more feedback to the user. Diagnosis " r "'" � �G;{��s��&�) says that, if
the body of the loop is only executed once (and not twice), then we
receive a correct behavior. When using the principle that more spe-
cific information should be preferred over general information, we
get " r "'" � �G;{��s��&�) as the single most probable diagnosis candidate.
The application of this principle is reasonable because it supports
solutions having more evidence.

Based on the preferred single diagnosis, an intelligent debugger
can further compute diagnoses that map back to expressions or state-
ments within the loop statement (associated with ;{�). We have to
distinguish between two possible bug locations, since either the con-
ditional or the block of the loop could contain the bug. These are
two independent diagnosis problems represented by two diagnosis
systems 687:9 , 687:C for the condition and the block, respectively.
We derive the observations for the diagnosis problems directly from
the original system description, the diagnosis " r "'" � �G;{��s��&�) , and
the behavior definition of the component ;{� . For space reasons, we
show only the diagnosis for the condition here. Using the model,
we derive 8 �� � � , 8 �,(#���� � �

, 8 �� � �
, 8 �,(#���� � �

. The system
�G687:9 s�;=<?>I@ 9 � comprises one component ; ;K� (implementing
the less-or-equal function), and three connections (! � , ! ,(#���� , !�"�#%$).
From the values of variables for each iteration we get two obser-
vation sets: <�� 6 � � "-! � � ��s+! ,(#���� � � s�!�"�#%$ � �+�'���) and
<��D6 � � "-! � � � s�! ,(#���� � � s�!E"'#%$ � �54 �.�,�) . We finally get that
; ;K� is a candidate. If the system were extended by the techniques
described in [14], we would additionally receive a replacement sug-
gestion, e.g., "�� �?@ r � ; � �G; ;K��s � � � �) as single diagnosis, which
obviously when applied leads to a correct implementation. However,
integrating these two approaches is the subject of future research.

Finally, we compare the outcome of our model with the results ob-
tained by using a standard analysis and debugging technique from the
program language community, program slicing [15]. A program slice
is defined for a given program, a statement 6 , and a set of variablesq and contains those program fragments, i.e., statements, influenc-
ing the value of a variable from q and occurring not after 6 . For our
example, the slice for the last statement (line 9) and the variable i
comprises all statements. When removing those statements included
in the slice for line 9 and variables start, stop, only the statements
from line 6 to 9 remain. A slice can be viewed as location for a po-
tential bug. Therefore, using program slicing leads to the same results
obtained by using the dependency model. Using the same arguments
as before, we conclude that our value-based model provides better
results than program slicing.

4 Related research and Conclusion

Automated debugging has been an active research area for several
decades. Some of the proposed techniques use dependencies be-
tween variables and statements or knowledge about the program
structure [8, 7], combined with specialized debugging algorithms.
Approaches using dependencies include program slicing [15], where
only statements causing a wrong variable value are considered, or ap-
proaches that compare a dependency specification which is explicitly
written by the programmer [6]. In [1], the structure of a program to-
gether with a probability theoretic evaluation of possible error types
has been proposed for debugging. In contrast to the latter two ap-
proaches, we only use information derived from the program itself.
When compared to the pure dependency-based approach of [9], both
the structure and the behavior of a program are considered for debug-
ging. This leads to an increased debugging time but provides better
results. As experience with the dependency-based approach for other
languages [4] has shown, dependencies still provide worthwhile in-
formation when dealing with large programs, so that combining the
two models (with the dependency-based model used for focusing in
on a smaller part of the program before the value-based model is
used) is a promising avenue of research. This combination is cur-
rently being implemented in our debugging prototype.

Other traditional approaches for debugging include [12] where the

semantics of the program is used to optimize guidance of the user
through the code. However, [2] showed that using model-based di-
agnosis for debugging reduces the number of questions necessary
for locating a bug when compared with [12]. In [14, 4, 16] the ap-
plication of model-based diagnosis has been extended to find bugs
in the hardware description language VHDL, and a small functional
language introduced for this purpose. Another approach for debug-
ging recursive functions using qualitative reasoning was described
in [10]. We think that the underlying ideas can be combined with
our value-based model (when extended to handle recursive functions)
and should provide better discrimination of bug candidates.

To conclude, in this paper we have introduced a model that can be
used for locating and (partly) repairing bugs in Java programs. The
model extends previously published models for software debugging.
First, it handles object-oriented features of the language, such as in-
heritance. Second, the model is more general than previous models
and value-based. Although we exclude recursive methods at the mo-
ment, we handle loop constructs. In addition, global variables can be
used and are correctly captured by the model. Apart from the model-
ing aspects, this paper provides a comparison with other approaches
including methods used by the software community for automated
debuggers. The result of this comparison is that the model-based ap-
proach delivers more accurate results and improves flexibility.

The work presented here provides a basis for future research in the
domain of applying model-based reasoning to debugging of object-
oriented languages. Open problems include the development and use
of different models capturing different faults in software, and to build
an intuitive user-interface for a model-based debugger.

REFERENCES
[1] Lisa Burnell and Eric Horvitz, ‘Structure and Chance: Melding Logic

and Probability for Software Debugging’, CACM, 31 – 41, (1995).
[2] Luca Console, Gerhard Friedrich, and Daniele Theseider Dupré,

‘Model-based diagnosis meets error diagnosis in logic programs’, in
Proc. IJCAI, pp. 1494–1499, Chambery, (August 1993).

[3] Johan de Kleer and Brian C. Williams, ‘Diagnosing multiple faults’,
Artificial Intelligence, 32(1), 97–130, (1987).

[4] Gerhard Friedrich, Markus Stumptner, and Franz Wotawa, ‘Model-
based diagnosis of hardware designs’, Artificial Intelligence, 111(2),
3–39, (July 1999).

[5] Peter Fröhlich and Wolfgang Nejdl, ‘A Static Model-Based Engine for
Model-Based Reasoning’, in Proc. 	�
 #�$ IJCAI, Nagoya, Japan, (Au-
gust 1997).

[6] Daniel Jackson, ‘Aspect: Detecting Bugs with Abstract Dependences’,
ACM TOSEM, 4(2), 109–145, (April 1995).

[7] Bogdan Korel, ‘PELAS–Program Error-Locating Assistant System’,
IEEE TSE, 14(9), 1253–1260, (1988).

[8] Ron I. Kuper, ‘Dependency-directed localization of software bugs’,
Technical Report AI-TR 1053, MIT AI Lab, (May 1989).

[9] Cristinel Mateis, Markus Stumptner, and Franz Wotawa, ‘Debugging of
Java programs using a model-based approach’, in Proc. DX’99 Work-
shop, Loch Awe, Scotland, (1999).

[10] Antoine Missier, Spyros Xanthakis, and Louise Travé-Massuyés,
‘Qualitative Algorithmics using Order of Growth Reasoning’, in Proc.
ECAI 94, pp. 750–754, (1994).

[11] Raymond Reiter, ‘A theory of diagnosis from first principles’, Artificial
Intelligence, 32(1), 57–95, (1987).

[12] Ehud Shapiro, Algorithmic Program Debugging, MIT Press, Cam-
bridge, Massachusetts, 1983.

[13] Markus Stumptner and Franz Wotawa, ‘Diagnosing Tree-Structured
Systems’, in Proc. 	�
 # $ IJCAI, Nagoya, Japan, (1997).

[14] Markus Stumptner and Franz Wotawa, ‘Debugging Functional Pro-
grams’, in Proc. 	�� # $ IJCAI, Stockholm, Sweden, (August 1999).

[15] Mark Weiser, ‘Program slicing’, IEEE TSE, 10(4), 352–357, (July
1984).

[16] Franz Wotawa, ‘Debugging synthesizeable VHDL Programs’, in Proc.
DX’99 Workshop, (1999).

