15th European Conference on Artificial Intelligence
  July 21-26 2002     Lyon     France  

ECAI-2002 Conference Paper

[PDF] [full paper] [prev] [tofc] [next]

An Incremental Algorithm for Tree-shaped Bayesian Network Learning

Josep Roure Alcobé

Incremental learning is a very important approach to learning when data is presented in short chunks of instances. In such situations, there is an obvious need for improving the performance and accuracy of knowledge representations or data models as new data is available. It would be too costly, in computing time and memory space, to use the batch algorithm processing again the old data together with the new one. We present in this paper an incremental algorithm for learning tree-shaped Bayesian Networks. We propose an heuristic able to trigger the updating process when data invalidates, in some sense, the current structure. The algorithm rebuilds the network structure from the branch which it is found to be invalidated. We will experimentally demonstrate that the heuristic is able to obtain almost optimal tree-shaped Bayesian Networks while saving computing time.

Keywords: Incremental Learning (not in the ECAI keywords), Bayesian Learning, Machine Learning

Citation: Josep Roure Alcobé: An Incremental Algorithm for Tree-shaped Bayesian Network Learning. In F. van Harmelen (ed.): ECAI2002, Proceedings of the 15th European Conference on Artificial Intelligence, IOS Press, Amsterdam, 2002, pp.350-354.

[prev] [tofc] [next]

ECAI-2002 is organised by the European Coordinating Committee for Artificial Intelligence (ECCAI) and hosted by the Université Claude Bernard and INSA, Lyon, on behalf of Association Française pour l'Intelligence Artificielle.