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Abstract. I describeandstudy the ‘supportencoding’of binary
constraintsatisfaction problems(CSP’s) into boolean satisfiability
(SAT). This is basedon work by Kasif in 1990, in which clauses
encodesupport information,ratherthantheencoding of conflictsin
the standard‘direct encoding’. This enablesarc consistency in the
original CSPto beestablishedby propagation in the translatedSAT
instance,providing anoptimalworstcasetimealgorithmfor arccon-
sistency [14]. I prove that the DP algorithm in SAT appliedto the
suportencoding behavesexactly like the MAC algorithmin CSP’s.
UsingtheSAT solver Chaff, I show thatthesupport encoding canbe
usedeffectively to solve hardinstancesof randombinaryCSP’s,and
moreeffectively thanthedirectencodingon hardinstances.Finally,
I show that the local searchalgorithmWalkSAT canperformmany
timesbetteron thesupportencodingthanon thedirectencoding.

1 Intr oduction and Background

Thereis continuinginterestin arcconsistency algorithmsfor binary
ConstraintSatisfactionProblems(CSP’s) [2, 22] andin translations
betweenCSP’sandSAT [1, 6, 20]. In thispaperI describeandstudy
the‘support encoding’ of CSP’s into SAT, contributing to both lines
of research.In thisencoding, unit propagationin theSAT instanceis
enough to establisharcconsistency (AC) in theCSP. Indeed,this is
anoptimalworstcasetime algorithmfor AC. This follows work by
Kasif [14], who introducedtheideaof encodingsupport information
into clauses,insteadof conflict information.

Before introducing somebackground material, I describesome
assumptionsmadein this paper. First, I only considerencoding bi-
naryconstraints.I seeno theoreticalproblemextendingthework to
the non-binary case,but translatedproblemswill probably become
too large for practicalpurposes. Nor do I considerencoding non-
binary constraintsinto binary onesand thenonwardsinto SAT, al-
thoughsuchtranslationsraisemany interestingtheoreticalandprac-
tical questions:seefor example[18]. Next, my theoreticalcompar-
isonswith CSPbasedtechniquesassumethatconstraintsarestored
extensionally. Finally, for notationalconvenienceI will assumethat
CSP’shave � constraintsand � variables,eachwith thesamedomain
size � . Thereis no significanceto thisexceptsaving thereaderbeing
lost in subscriptson domains:no theorydepends on this.

I first describethe mostcommonlyusedencoding of CSP’s into
SAT: what Walsh calls the ‘direct’ encoding[20]. It hasmuch in
commonwith thesupport encoding.WehaveaSAT variablefor each
value � of eachCSPvariable � . Thevariable ���
	 � means‘variable �
takesvalue � ’ or in short‘ �
��� ’, so that ����	 � is falsewhen ������ .
Therearetwo kindsof clausesin thedirectencoding:
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� At-least-one � ��	 ��� � ��	 ������� � � ��	 �
� Conflict � � �
	 � � � ��� 	 �
There are � at-least-oneclausesof arity � . There is one conflict
clausefor eachpair of variables � and  involved in a binary con-
straint,and for eachpair of values � and ! suchthat �"�#� is in
conflict with  $�%! . The number of clausesof size2 is the total
numberof conflictsin the instance,boundedabove by �&� � . The re-
sultingSAT instancehasa solutioniff theCSPdoes.

Two key algorithmsfor binary CSP’s areFC (forward checking
[11]) andMAC (maintainingarc consistency, calledDEEB in [5].)
After eachsearchdecision,FC removesvaluesfor unassignedvari-
ablesno longersupportedby thevariablejustset,but doesnotpropa-
gatetheeffectsof thesedomainreductions.MAC doespropagate,es-
tablishingarcconsistency aftereachsearchdecision,backtracking if
thiscausesfailure.Theearlierbacktrackingcanrepaytheextraover-
headsincurred[17]. Thereisanidentitybetweentheactionof FCand
theactionof DP (theDavis-Putnam-Logemann-Loveland algorithm
[3]) appliedto the direct encoding: the two algorithmsexplore the
samebranchesgiven equivalent branching heuristics[6, 20]. In this
paperI prove the analogousresult for MAC andDP appliedto the
supportencoding, andthenshow experimentallythattheextra prun-
ing achieved canreducerun time usingChaff. I thenshow that the
supportencodingallows WalkSAT to solve translatedCSPinstances
anorderof magnitudefasterthanusingthedirectencoding.

2 The Support Encoding

Thekey featureof thedirectencodingis to encodeconflictsinto new
clauses.Kasif introducedtheideaof encodingthesupportfor avalue
into clauses[14] . The supportof a value �'��� acrossa constraint
is the setof valuesof the other variablewhich allow �(�%� . It is
straightforwardto encodesupport into clauses,following Kasif:

� Support:
if � �&) � � ) ����� �+* arethesupportingvaluesfor  ,�-! in variable�

� ��	 �/. � � ��	 �102���3� � � ��	 �54 � � ��� 	 �
Thereis onesupport clausefor eachpair of variables� )  involvedin
a constraint,andfor eachvaluein the domainof  . Unlike conflict
clauses,weneedasimilarclausein each‘direction’, onefor thepair� )  andonefor  ) � . Thismakesa totalof 67�&� constraintsof size � .

Figure 1 gives a simple example of the supportclausesfor the
problemwhere 8-9;: , :<9;= and =>9?8 , andeachvariablehas3
values.Thereare18 clausesin 6 groups of 3 clauses.The top three
lines gives the supportclausesof the first variable in the three 9
constraints,and the bottom threelines the support clausesfor the
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Figure 1. Thesupportclausesfor thethreeconstraints DFEHG (left), GIEHJ
(middle), and JKE<D (right), with each variable DMLNG3LOJ having domainsize3,

secondvariable.For example,theclause= @ � � :�� (in themiddleof
the secondline in Figure1) encodes the support for :<�P6 in the
constraint:Q9$= . Since:Q9$= and =QR-S , theonly supportfor :
�T6
is =U�VS . The clauseexpressesthis by sayingthat either =U�VS or:$��P6 . This problemis easily shown to be arc-inconsistent. Since8W9X: we have that 8Y��ZS . Then =,9[8 givesthat =\��]6 and =\��ZS .
The constraint:\9^= forces =_��a` . Arc-consistency haswiped out
all threevaluesin the domainof = . We canfollow exactly this line
of reasoningin theclausesof Figure1, usingonly unit propagation.
From 8\9b: thereisaunit clause

� 8M@ . Thispropagatesinto theclause8A@ � � = � to give
� = � , because =c9X8 , andthat inequalityalsogives

the unit clause
� = @ . Finally, thereis a unit clause

� = � from :U9�= .
Thusall threeliterals = � ) =&� ) = @ have beenfalsified,corresponding to
thedomainwipe out.

The support clauseshave two key properties[14]. The support
clausesarenegative Horn clauses,containingat mostonenegative
literal, anda setof Horn clausescanbe solved in linear time. Sec-
ond,thesupportclauseswill remove any valueswhich cannot bearc
consistent.ThesepropertiesenabledKasif to prove thatcreatingthe
supportclausesandsolving asHorn clausesgivesan optimal worst
casetime algorithmfor establishingarcconsistency [14].

Thesupport clausesontheirown donotprovideacorrectencoding
of CSP’s into SAT. To completeanencoding usingsupportclauses,
we needto add two more setsof clauses.We add the at-least-one
clausesto encodethat eachCSPvariabletakesat leaston value.It
is alsonecessaryto includeclausesto encode thateachCSPvariable
cantake atmostonevalue:

� At-most-one � �d�
	 � � � �e��	 �
Thereis onesuchclausefor each� andpair `fR-�U9g!]R-� , a total
of �h�ei��cj-`&kml+6 clauses.I cannow definethe ‘supportencoding’ of
binary CSP’s in SAT. While a straightforward extensionof Kasif’s
work, I amnot awarethatit hasbeendefinedor usedbefore.

Definition 1 (Support Encoding) Thesupport encoding ofa binary
CSPconsistsof the appropriate support, at-least-one, and at-most-
oneclauses.

If every valuein � supports ,�[! , thesupportclausecanbeomitted
asit is subsumed by thecorrespondingat-least-oneclause:I do this
in theimplementationdescribedbelow.

3 Theoretical Evaluation

Kasif showedthatthesupportclausescanbeconstructedin n�i
�&� � k
time andsolvedby a (negative) Horn clausesolver in thesametime,
thus providing an optimal worst casetime algorithm for AC [14].
Thoseresultscanbe extendedeasilyto theuseof unit propagation,

as the following threeresultsshow. I omit proofs for the thesere-
sultsdueto their similarity with Kasif’s work, but provide themin a
technicalreport[7].

Theorem 2 If no unit propagation is possiblein an encoding con-
tainingtheat-least-oneandsupport clauses,andfalsityhasnotbeen
established,anarc consistent setof domainsis givenby thosevalues�B�-� such that thedomain of � ��	 � containso .

In the direct encoding, the at-most-oneclausescan be addedor
omittedasdesired.The reasonis that they never change the satisfi-
ability of anencodedproblem,but do establishan isomorphismbe-
tweensolutionsof theCSPinstanceandof theSAT instance.Corol-
lary 3 shows that in the supportencoding the at-most-oneclauses
have a particularly interestingeffect: they convert an encoding of
arc-consistency in a probleminto anencodingof theproblemitself.

Corollary 3 Anysolutionto anencoding containingtheat-least-one
andsupport clausescorrespondsto a setof arc consistentdomains.

We can usetranslationinto SAT and unit propagationasan arc
consistency algorithm.Not only is this an acceptable algorithm, it
is in fact optimal, in termsof worst casetime. This is becauseunit
propagationcanbe appliedexhaustively in time proportional to the
sizeof theinstance(seefor example[21].)

Theorem 4 Translationof a binary CSPinto a SAT problemusing
the support encodingand the exhaustiveapplicationof unit propa-
gationcanbeachievedin time n�i
�p� � k provided that �Fq$� .

Not only cansupport clausesallow arc consistency to be estab-
lished in optimal time, they allow the efficient maintenance of arc
consistency. Accordingly, we cannow prove thatMAC on theorig-
inal CSPdoesthesamework asDP on thesupport encoding, given
somesimpleconditions.

Corollary 5 (Soundnessof Support Encoding) Anysolutionto an
encoding containing the at-most-one, at-least-oneand support
clausescorrespondsto a solutionof theCSP.

Proof: FromCorollary3, theSAT solutioncorrespondsto a setof
arcconsistentdomains,but thesedomainsareall of sizeonebecause
of the at-most-oneconstraints.An arc consistentsetof domainsof
size1 is a solutionto theCSPproblem.QED

Theorem 6 (Completenessof Support Encoding) Given an arc
consistentset of domainsof the CSP, construct a SAT partial as-
signmentasfollows: setvariable ���
	 �r�Zo if �s�]� in theCSP;set� �
	 � ��t if � is not in the domainof � ; and leave � ��	 � unassigned
if � is in the domainof � but other valuesremainin the domainof� . Under this assignment,no unit propagation is possiblein theSAT
instance.

Proof: Wework by caseanalysis.Weshow thateachpossibleunit
clausewill have beensetappropriately, and thus no unit propaga-
tion will take place.First,anat-least-oneclausemight have become
the unit �d��	 � . But thenall other �d��	 �[�;t , so the only valuein the
domainof � is � , so �B�X� andwehave ���
	 �u�go . Second,anat-most-
oneclausemight have become

� � ��	 � . But thensome � ��	 � �vo , so�K�Z! and � is not in thedomainof � , so � �
	 � �]t . Finally, we get
two casesin supportclauses.If a support clauseis unit

� � � 	 � , then
all support literals � ��	 � arefalse,so thereis no supportfor  w�x!



in thedomainof � , so thevalue  \�]! will have beenremovedand��� 	 � �yt . Alternatively, if a support clauseis unit � ��	 � , we have��� 	 � �Vo , so  Y�x! . All valuesnot supporting  _�x! will have
beenremoved, andall other

� � ��	 �/z �{t soall othervaluessupport-
ing  |��! have alsobeenremoved. Thus � is the only valuein the
domainof � , so �C�-� and � �
	 � �go . QED

When unit propagationstops,an arc consistentstatehas been
reached(Theorem2). And, whenever MAC reachesan arc consis-
tentstate,no unit propagationis possible(Theorem6). Sowe have:

Corollary 7 DP (without pure literal deletion)on the supporten-
codingof CSP’s andMAC on theoriginal instanceperformequiva-
lent search, givenequivalentbranching decisions.

It is interestingto notethatthesupport clausescanbederivedfrom
the direct encodingusing the resolutioninferencerule. For exam-
ple, considerthe constraint8}9v: with domainsize3. The conflict
clausesfor :
�Z6 are

� 8 � � � : � and
� 8�@ � � : � . Resolvingthefirst

with the at-least-one8 �I� 8 � � 8A@ gives 8 �I� 8A@ � � : � . Resolving
againwith the secondconflict clauseyields 8 � � � :�� , the support
clausefor :\�?6 . This canbe generalisedeasily. This is a partic-
ularly clearexampleof the benefitsthat canbe gainedfrom adding
derivedclauses.We seethatperformingthenecessaryresolutionsas
a preprocessingstepcanconvert an encodingthat will act asFC in
SAT into onethatcanperformMAC.

4 Implementation and Experimental Design

I implementedthetranslatorinto SAT in GNU CommonLisp. Each
constraintwasoriginally presentedasa list of conflicts,from which
the translatorhad to constructthe support setsand the clausesthat
arise from the support sets.The only issuewhich involved some
slight carewasto ensurethat the translationwasstill performedin
time n�i
�&� � k . To do this, a �H~_� matrix wasconstructedfor each
constraint,andzeroed.Eachconflict wasenteredin turn: whenall
conflictshave beenencounteredwe cancalculatethesupport setsby
going througheachrow and column of the matrix. The first stage
takestimeproportional to thenumber of conflicts2 andthesecondis
timeproportional to �(~|� .

Becauseof theavailability in thepublic domainof excellentSAT
solvers,my translatorwrote out files in Dimacsformat for input to
oneof thesesolvers. I consideredusingGrasp,Satz,andChaff. In
my experimentalresultsI reporton theusageof Chaff [16]: of these
threeit wasusuallythemosteffective,oftenby a largemargin.

Themainpurposeof theexperimentspresentedhereis to studythe
practicaleffectivenessof, first, establishingAC in a binary CSPvia
SAT, andsecond,solving binary CSP’s usingthesupport encoding.
Thisaim hassomesignificanteffectson theexperimental design.

ThemainmeasureI haveusedthroughout is cputime.While noto-
riously problematic,it is thefundamentalunit of measurement asfar
aspracticalproblemsolvingis concerned. It is importantto consider
thetimenecessaryto dothetranslationof theCSPinstance.Thiswas
measuredastherun time of my Lisp translator. I do not includethe
timetakento write out theSAT clauses:I assumethatin aproduction
systemonewould passtheconstructedclausesinternally. For Chaff,
I report the cpu time asreportedby the Unix system,asthis often
seemedto besignificantlygreaterthanthetime reportedby thepro-
gram. This doesmeanthat the time to readin the Dimacsfile had

� Thisneedsaslightoptimisation.A singlematrixwasusedfor all constraints
to save spaceallocation. Theentry for a given pair ����L��7� wasthe number
of the most recent constraint examined containing this conflict, to avoid
resetting all entriesto 0.

to be counted. In experiments below, I report the run time usedby
Chaff, andthetotal time whenthatis addedto thetranslationtime.

TheexperimentsI reportuserandomlygeneratedinstances.While
thismeansthattheinstancesarenotof practicalimportance,wehave
anunlimitedavailability of testinstances.More importantly, wehave
minimaldangerof overfitting if instancesfrom aphasetransitionare
used.With colleaguesI have recommended using‘flawless’random
CSP’sto ensureanasymptoticphasetransition[9]. I donotuseflaw-
lessinstanceshereasthey areguaranteedto bearcconsistent,while
my focusisontheestablishmentandmaintenanceof arc-consistency.
InsteadI usedthe(flawed)‘modelB’: in theclass��� ) � )��h�3)�� ��� with� variablesof domainsize � , we choosea randomsubsetof exactly��� ��i��Ujb`pkml+6 constraints,eachwith exactly � � � � conflicts.

5 Establishing Ar c Consistency

Propagationin supportclausesis optimal with respectto establish-
ing AC in the sameway thatAC-4 is optimal [15], i.e. in the worst
casetime complexity. AC-4 is not usedin practicebecauseit is too
expensive to build its datastructuresandthenmaintainthemduring
search[19]. It seemsthattranslationinto SAT mightsuffer from sim-
ilar problems.I investigatedthis experimentally, studyinghow long
it takes to establisharc consistency using the supportandat-least-
oneclauses,but omitting theat-most-oneclauses.Theorem2 shows
thatarcconsistency is establishedwhenunit propagationstopsin this
case.Unfortunately, the run time up to this point is not reportedby
Chaff: we only have therun time to provide a full solutionor to fail.
For-arcinconsistentinstancesthis is thesamething from Theorem2.
For arc-consistentinstances,however, therun timesreportedinclude
theadditionaltime usedto searchfor a full assignment correspond-
ing to arc-consistent domainsin thesenseof Corollary3. However,
Chaff neversearchedextensively, andcomparisonwith timesfor arc-
inconsistentcasessuggestedthattherun timesarenotdramaticover-
estimates– perhaps50%at most.

For comparisonwith thestateof theart in AC solving,I performed
similarteststo thoseperformedby BessìereandRegin usingAC2001
[2]. They useda Pentium300MHzcomparedto my Pentium1GHz,
and kindly ran a benchmarking test to confirm that the machineI
usedwasabout threetimesfaster. In thecaseof �O`&�7� ) ��� � , testswere
for problemsbefore,during,andafterthearcconsistency phasetran-
sition [8], as indicatedby the probability given.Samplesweresize
50. I performedonenew test,with samplesize99, of the �O`��+� ) `&� �
classat its solubility phasetransition,for comparison with the next
section.

Table 1. Performance of encodingson AC in binary CSP’s.Times(in
seconds)givenfor AC2001, whereavailable,areasgiven by Bessìereand

Regin, on a machine �_� timesslower thanusedfor new experiments.

Class prob(AC) AC2001 AC in SAT
Chaff Total���&� L �&� L �5�&� � L �+� �p��� �p� 0.44 0.61 1.27 7.36� � �&� L �&� L �&�&� L �+� � � 1 0.05 1.77 6.07� � �&� L �&� L �&�&� L �+� � � ��� � 0.50 0.34 0.50 2.92� � �&� L �&� L �&�&� L �+� ��� � 0 0.16 0.39 2.59� � �&� L � � L � �&� L �+� �&� � 1 - 0.05 0.13

Table1 showstheresults.Runtimesfor AC in SAT aregivenwith-
out andincludingtranslationtime.Giventhefastermachineused,it
cantake up to about30 timeslonger to establishAC in SAT in the
phasetransition.Also, we do not seeeasybehaviour away from the



AC phasetransition,makingrun timeseven worsein theundercon-
strainedregion. This is clearly not the bestway to establishAC in
CSPinstances.On the other hand,performance is not unbearably
badwith amaximumof afew seconds, andweknowthatresultswill
scalewell becauseof theoptimality result.

6 Performanceon Hard CSPInstances

It was unlikely that translationinto SAT would be a good way of
establishingAC becauseno searchis involved.But modernsolvers’
optimisedimplementations,andintegratedtechniquessuchasback-
jumping andlearning,arelikely to meanthat solutionof hardCSP
instanceswill bemorecompetitive.Thisalsoenablesmeto compare
performanceof thesupportencoding with thedirectencoding.I per-
formedtestson problemswith domainsize �|�;`�� , averagedegree
5 (i.e. � � �Z�7lAi��Wj$`pk ) andvarying � and � � , asusedpreviously to
compareMAC andFCby Grant& Smith[10].
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Figure 2. Decisionsin Chaff (y-axis)plottedagainst � � (x-axis).

Figure2 shows how many decisionsareneededon averageandin
the worst caseby Chaff working on the two encodings for varying� � at ������� . Samplesweresize 100 at eachpoint. We seethat,
aswe would expect, the support encodingneeds much lesssearch
thanthe direct encoding. In fact, the maximumat eachpoint of the
supportencodingis lessthanthemeanof thedirectencoding. Notice
that for � ��� � � � , no searchdecisionsat all are necessaryin the
supportencoding.Thisis becauseall instanceswerearc-inconsistent.
As Theorem2 requires,when an instanceis arc-inconsistent,unit
propagationprovesunsatisfiabilitywithoutany branchingdecisions.

Figure3 shows the meanrun time, with andwithout translation,
neededfor thesesolutionsin the two encodings. The first point to
note is the very small totals,with the meannever above 0.35sfor
eitherencoding ona300MHzPentium.Thisconfirmsthattranslation
into SAT togetherwith Chaff is aserioustechnology for solvinghard
randombinary CSP’s. In most regionsthe direct encoding is faster
to solve in Chaff, although at the peakin complexity around� �U�� � �+� , weseethatit becomessignificantlymoreexpensive. Including
translationtime, the direct encoding is usually better, but doesdo
worsethanthesupportencoding at thevery hardestpoints,andalso
in thevery overconstrainedregion.

As we increasetheproblemsize,thesupport encoding comesinto
its own. For ����`&�7� , � � ��� � �+� , with 39% solubility, the sup-
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Figure 3. Runtime in Chaff (y-axis) plotted against� � (x-axis).

port encoding takesanaverageof 0.82s(0.90stotal) compared with
2.25s(2.29stotal)for thedirectencoding, ona1GHzPentium.Chris-
tian Bessìere very kindly ran somecomparisonexperimentsusing
MAC2001,i.e. theMAC algorithmusingAC2001internally [2]. At� � ��� � �+� , with a sampleof size50, he obtainedcomparablesolu-
bility of 40% with a meanrun time 0.48s.However, ashis machine
is about 3 timesslower thanmine, this shows that translationusing
thesupport encoding andsolutionin Chaff is about5-6 timesslower
thanthestateof theartusingCSPtechniques.

It is reasonableto conclude that translatinginto SAT via thesup-
port encoding is an effective way of solving hard randombinary
CSP’s. We have the additionaladvantage of automaticallybenefit-
ing from any futuredevelopments in SAT solverswithout theneedto
reinventthewheelintegratingnew ideasinto CSPsolvers.

7 Performanceof WalkSAT

Themostremarkableaspectof thesupportencoding is its improved
performancefor local search.As the encodingwasdesignedto en-
forcearc consistency in a completealgorithm,the resultspresented
aboveusingChaff areperhapsnotsurprising.Thereseemsnoapriori
reasonto expectthatanencodingdesigned for strongerpropagation
shouldalsobebetterfor localsearch.This,however, is thecase.

The instancesI testedwere the 39 satisfiableinstancesfound in
the �O`&�+� ) `&� ) � � ������� ) � � �7� � datasetreportedonabove.Thealgorithm
usedwasHoos’s ‘rnovelty+’ variantof WalkSAT. This hasthe ad-
vantagethat the max-flipsparameterdoesnot seemto be critical to
performance,so it can be set to somevery large number, in these
experiments̀&��  , with 100 restartson eachinstance.However, the
‘noise’ parameter� hasto beatleastroughly optimised.Performance
at � ��� � � , themostcommonly usedvalue,canbevery misleading
if it is optimal for oneproblemclassbut not for the other. Equally,
it is importantto avoid overfitting. To find a compromisebetween
thesetwo dangers,I followedamethodology recommendedby Hoos
[13]. I tested3 instancesin eachof the two encodings,at noiseval-
ues � � ` ) � � 6 ) ����� ) � � ¡ with max-flipsonly `��7¢ and10 restarts.These
smallvaluesmeanthatsignificantlyfewerflips wereusedoptimising� thanwereallowedfor thereportedexperimentonasingleinstance.
Theoptimalparameterswere � �v� � £ for thesupportencoding and� ��� � ¤ for thedirectencoding. For thesecondary noiseparameter
in rnovelty+, I usedthedefault valueof 0.01.
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Figure 4. Performanceimprovementfactor in WalkSAT (y-axis)of
supportencoding over direct encoding,againstmeanflips in support
encoding (x-axis).Log scalesareusedbecauseof thetwo outliers.

WalkSAT performsdramaticallybetteron the supportencoding
thanon the direct encoding. Figure4 is a scatterplot: it shows the
averagenumberof flips usedin thesupport encoding,plottedagainst
the factorthis needsto bemultiplied by to give theaveragenumber
of flips until successin thedirectencoding of thesameinstance.The
minimum factorwas2.34, so the bestthat the direct encoding did
wasto take morethantwice asmany flips asthe supportencoding.
Theworstwas922 timesmoreflips. Themedian(not influencedby
the outlier) was a factor of 16 improvement. The direct encoding
wasableto searchabout 30%moreflips persecond, but themedian
speedupin cputimewasstill 12-fold.

In raw performanceterms,themediantime(averagedover the100
restarts)to solve eachinstancein the support encodingwas0.94s,
althoughthemaximumwas57s.Apart from this lastoutlier, thisper-
formanceis competitive with the solutionsfound by Chaff, which
hada medianof 0.26son thesolubleinstances.It seemsthatthereis
muchscopefor extendingearlierstudiesof local searchin encoded
versionsof CSP’s [4, 12] in thelight of thesenew results.

I canonly speculatewhy thisencodingis sogoodcomparedto the
directencoding.Onereasonmaybethatsupport clauses,with upto �
literals,arelargerthanconflict clauseswith 2 literals.Largerclauses
will be satisfiedmoreof the time and might thereforemisleadthe
searchprocessless.Anotherfactormay be the removal of the very
strongbias to falsity in the direct encoding, in which only the at-
least-oneclausescontainpositive literals. Literals occur in support
clauseswith both polarities,and this may prevent searchresetting
variablesto falsevery soonafterthey becometrue.

8 Conclusions

I have studied Kasif’s idea of encoding support information in
clausesinsteadof conflict information.Unit propagationin theSAT
instanceestablishesarc consistency, and it doesthis in the optimal
worst-casetime for establishingarc consistency usingany possible
technique.However, in practicethisdoesnot seemto becompetitive
with thestateof theart for establishingarcconsistency.

I alsopresentedthe‘support encoding’ of binaryCSP’s into SAT.
I provedthatthestandardDPalgorithmin theSAT instanceperforms
thesamesearchthatMAC doesin theoriginalCSP. Forsolvingprob-
lemsratherthanjust establishingconsistency, the support encoding

performsvery well. It is ableto solve hardrandomlygenerated in-
stanceswith searchspacesof size `&� �¦¥m¥ in lessthan a secondon
averageusingChaff. Moreover, thelocal searchalgorithmWalkSAT
runsan orderof magnitude fasteron thesehardinstancesusingthe
supportencodingthanwith thedirectencoding.
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