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Abstract. | describeand studythe ‘supportencoding’of binary
constraintsatistiction problems(CSP5) into bodean satisfiability
(SAT). This is basedon work by Kasif in 1990 in which clauses
encodesuppat information, ratherthanthe encodng of conflictsin

the standarddirect encaling’. This enablesarc consisteng in the
original CSPto be establishedy propagtionin the translatedSAT

instanceproviding anoptimalworstcasetime algorithmfor arccon-

sisteng [14]. | prove thatthe DP algorithmin SAT appliedto the

suportencodirg behaesexactly like the MAC algorithmin CSPs5.

Usingthe SAT solver Chaf, | shav thatthe suppat encodng canbe

usedeffectively to solve hardinstance®f randombinary CSP5,and
moreeffectively thanthe directencodingon hardinstancesFinally,

I shav thatthe local searchalgorithm WalkSAT canperformmary

timesbetteron the supportencodingthanon thedirectencoding

1 Intr oduction and Background

Thereis continuinginterestin arc consisteng algorithmsfor binary
ConstraintSatisaction ProblemgCSPs) [2, 22] andin translations
betweenCSP5andSAT [1, 6, 20]. In this paperl describeandstudy
the ‘'suppat encodng’ of CSP5into SAT, contrikuting to bothlines
of researchln this encoding unit propagatiorin the SAT instances
enoudn to establisharc consisteng (AC) in the CSP Indeed thisis
an optimal worst casetime algorithmfor AC. This follows work by
Kasif [14], who introducedtheideaof encodingsupport information
into clausesinsteadof conflictinformation.

Before introducing somebackgound material,| describesome
assumptionsnadein this paper First, | only considerencodng bi-
nary constraints! seeno theoreticalproblemextendingthe work to
the non-birary case but translatedproblemswill probaly become
too large for practical purposes. Nor do | considerencodng non-
binary constraintsnto binary onesand then onwardsinto SAT, al-
thoughsuchtranslationgaisemary interestingtheoreticalandprac-
tical questionsseefor example[18]. Next, my theoreticalcompar
isonswith CSPbasedtechniquesassumehat constraintsare stored
extensionally Finally, for notationalconveniencel will assumehat
CSP5have e constraintandn variablesgachwith thesamedomain
sized. Thereis no significanceo this exceptsaving thereaderbeing
lostin subscripton domairs: no theorydepend onthis.

| first describethe mostcommonlyusedencodirg of CSPs into
SAT: what Walsh calls the ‘direct’ encoding[20]. It hasmuchin
commonwith thesuppat encodng. We have a SAT variablefor each
valuewv of eachCSPvariable:. The variablez; , meansvariablei
takesvaluew’ orin short's = v’, sothatz;,, is falsewheni # v.
Therearetwo kinds of clausesn the directencodng:
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Thereare n at-least-oneclausesof arity d. Thereis one conflict
clausefor eachpair of variablesi and j involved in a binary con-
straint,and for eachpair of valuesv andw suchthati = v isin
conflict with j = w. The numbe of clausesof size?2 is the total
numberof conflictsin the instance boundedabore by ed®. There-
sulting SAT instancehasa solutioniff the CSPdoes.

Two key algorithmsfor binary CSP5 are FC (forward checkng
[11]) and MAC (maintainingarc consisteng, called DEEB in [5].)
After eachsearchdecision,FC removesvaluesfor unassignedari-
ablesnolongersuppatedby thevariablejustset,but doesnotpropa-
gatetheeffectsof thesedomainreductionsMA C doespropaate es-
tablishingarcconsisteng aftereachsearchdecision backtraclng if
this causedailure. Theearlierbacktrackingcanrepaythe extra over
headsncurred[17]. Thereis anidentity betweertheactionof FCand
theactionof DP (the Davis-Putnam-Logemann-helard algorithm
[3]) appliedto the direct encodirg: the two algorithmsexplore the
samebranclesgiven equivalert branching heuristicg[6, 20]. In this
paperl prove the analogusresultfor MAC and DP appliedto the
supportencodirg, andthenshav experimentallythatthe extra prun-
ing achieved canreducerun time using Chaf. | thenshow thatthe
supportencodingallows WalkSAT to solwve translatedCSPinstances
anorderof magnitudefasterthanusingthe directencodiry.

2 The Support Encoding

Thekey featureof thedirectencodings to encale conflictsinto new

clausesKasif introducedtheideaof encodinghesupportfor avalue
into clauseq14] . The supportof avaluei = v acrossa constraint
is the setof valuesof the othervariablewhich allow i = v. It is

straightforvardto encod support into clausesfollowing Kasif:

e Support:
if v1,v2,...v, arethesupportingvaluesfor j = w in variables
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Thereis onesupprt clausefor eachpair of variablesi, j involvedin
a constraintandfor eachvaluein the domainof j. Unlike conflict
clausesyve needasimilar clausein each'direction’, onefor the pair
1, j andonefor j, i. Thismakesatotal of 2ed constraintf sized.
Figure 1 gives a simple examge of the supportclausesfor the
problemwherea < b, b < ¢ andc < a, andeachvariablehas3
values.Thereare 18 clausesn 6 grougs of 3 clausesThetop three
lines gives the supportclausesof the first variablein the three <
constraints and the bottom threelines the suppat clausesfor the
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Figurel. Thesupportclausesfor thethreeconstrantsa < b (left), b < ¢
(middle), ande < a (right), with eac variablea, b, ¢ having domainsize3,

secondvariable.For example,the clausecs V —bs (in the middle of

the secondline in Figure 1) encods the suppat for b = 2 in the
constrainth < ¢. Sinceb < ¢ ande < 3, theonly supportfor b = 2

is ¢ = 3. The clauseexpresseghis by sayingthateitherc = 3 or
b # 2. This problemis easily shavn to be arc-inconsisten Since
a < bwehavethata # 3. Thenc < a givesthatc # 2 andc # 3.

The constraintb < ¢ forcesc # 1. Arc-consisteng haswiped out
all threevaluesin the domainof ¢. We canfollow exactly this line
of reasoningn the clausesf Figurel, usingonly unit propagation.
Froma < bthereisaunitclause-as. Thispropagitesnto theclause
as V —cy 10 give -z, becaus ¢ < a, andthatinequalityalsogives
the unit clause—cs. Finally, thereis a unit clause—c; fromb < c.

Thusall threeliteralsci, ¢2, c3 have beenfalsified,corresponihg to
thedomainwipe out.

The suppat clauseshave two key properties[14]. The suppat
clausesare negative Horn clausescontainingat mostone negative
literal, and a setof Horn clausescanbe solved in lineartime. Sec-
ond,the supportclausewill remove ary valueswhich cannd bearc
consistentThesepropertiesenabledKasif to prove thatcreatingthe
supportclausesandsolving asHorn clausegyives an optimal worst
casetime algorithmfor establishingarcconsistenyg [14].

Thesupport clause®ntheirown donotprovide acorrectencodng
of CSP5into SAT. To completeanencodirg usingsupportclauses,
we needto add two more setsof clausesWe add the at-least-one
clausego encodethat eachCSPvariabletakes at leaston value. It
is alsonecessaryo includeclausedo encoa thateachCSPvariable
cantake atmostonevalue:

o At-most-one
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Thereis onesuchclausefor eachi andpairl < v < w < d, atotal
of nd(d — 1)/2 clausesl cannow definethe ‘supportencodng’ of
binary CSP5 in SAT. While a straightforvard extensionof Kasif's
work, | amnotawarethatit hasbeendefinedor usedbefore.

Definition 1 (Support Encoding) Thesupprt encodng ofabinary
CSPconsistsof the appropriate suppat, at-least-ongand at-most-
oneclauses.

If everyvaluein ¢ supportsj = w, thesupportclausecanbeomitted
asit is subsumd by the correspading at-least-onelause:l do this
in theimplementatiordescribeelow.

3 Theoretical Evaluation

Kasif shaved thatthe supportclausescanbe constructedn O(ed?)
time andsolved by a (negative) Horn clausesolver in the sametime,
thus providing an optimal worst casetime algorithm for AC [14].
Thoseresultscanbe extendedeasilyto the useof unit propagtion,

asthe following threeresultsshow. | omit proofs for the thesere-
sultsdueto their similarity with Kasif's work, but provide themin a
technicalreport[7].

Theorem 2 If no unit propagation is possiblein an encodirg con-
tainingtheat-least-oneand suppat clausesandfalsity hasnotbeen
establishedan arc consistehsetof domainss givenby thosevalues
1 = v su thatthedoman of z;,,, containsT'.

In the direct encodng, the at-most-oneclausescan be addedor
omittedasdesired.The reasonis thatthey never change the satisfi-
ability of anencodd problem,but do establishanisomorphismbe-
tweensolutionsof the CSPinstanceandof the SAT instance Corol-
lary 3 shaws thatin the supportencodirg the at-most-oneclauses
have a particularly interestingeffect: they corvert an encodng of
arc-consistencin aprobleminto anencodingof the problemitself.

Corollary 3 Anysolutionto anencodirg containingtheat-least-one
andsupport clausescorrespndsto a setof arc consistendomains.

We can usetranslationinto SAT and unit propagationas an arc
consisteng algorithm. Not only is this an acceptake algorithm, it
is in factoptimal in termsof worst casetime. This is becausaunit
propagatiorcanbe appliedexhaustvely in time proportiona to the
sizeof theinstance(seefor example[21].)

Theorem4 Translationof a binary CSPinto a SAT problemusing
the suppat encodingand the exhaustiveapplication of unit propa-
gationcanbe achievedin time O(ed”) provided thate > n.

Not only cansuppat clausesallow arc consisteng to be estab-
lishedin optimal time, they allow the efficient maintenane of arc
consisteng. Accordingly, we cannow prove that MAC on the orig-
inal CSPdoesthe samework asDP on the suppat encoding given
somesimpleconditions.

Corollary 5 (Soundressof Support Encoding) Anysolutionto an
encoding containing the at-most-ong at-least-oneand support
clausescorregpondsto a solutionof the CSP

Proof: FromCorollary3, the SAT solutioncorrespordsto a setof
arcconsistentlomains put thesedomainsareall of sizeonebecause
of the at-most-oneconstraints An arc consistensetof domainsof
sizel is asolutionto the CSPproblem.QED

Theorem 6 (Completenesof Support Encoding) Given an arc
consistentset of domainsof the CSR constrict a SAT partial as-
signmentsfollows: setvariable z; , = T if i = v in the CSP;set
z;, = F if visnotin thedomainof z; andleavez; , unassiged
if v is in the domainof ¢ but other valuesremainin the domainof
1. Underthis assignmentno unit propagation is possiblein the SAT
instance

Proof: Wework by caseanalysisWe shav thateachpossibleunit
clausewill have beensetappropiately, and thus no unit propaga-
tion will take place.First, anat-least-onelausemight have become
the unit z;,»,. But thenall otherz;, ., = F, sotheonly valuein the
domainof i isv, soi = v andwehavez; , = T. Secondanat-most-
oneclausemight have become—z; ,,. But thensomez; ., = T', SO
1 = w andw is notin thedomainof 4, sox; , = F'. Finally, we get
two casedn supportclauseslf a support clauseis unit —z;,.,, then
all suppot literals z; ,, arefalse,so thereis no supportfor j = w



in the domainof ¢, sothevaluej = w will have beenremovedand
zjw» = F. Alternatively, if a suppot clauseis unit z; ,, we have
Zjw = T,s0j = w. All valuesnot suppating j = w will have
beenremoved, andall other—z; ,» = F soall othervaluessuppat-
ing j = w have alsobeenremoved Thusw is the only valuein the
domainof ¢, s0i = v andz;,, = T. QED

When unit propagationstops,an arc consistentstate has been
reached(Theorem2). And, whenerer MAC reachesan arc consis-
tentstate no unit propagtionis possible(Theorem6). Sowe have:

Corollary 7 DP (without pure literal deletion)on the supporten-
codingof CSP5 and MAC on the original instanceperformequiva-
lent seach, givenequivalentoranching decisions

It isinterestingo notethatthesuppat clausesanbederivedfrom
the direct encodingusing the resolutioninferencerule. For exam-
ple, considerthe constrainta < b with domainsize 3. The conflict
clausedor b = 2 are—as V —b2 and—-ag V —bs. Resolvingthefirst
with the at-least-onei1 V a2 V as givesai V as V —bs. Resolving
againwith the secondconflict clauseyields a: V —bs, the suppat
clausefor b = 2. This canbe generalisectasily This is a partic-
ularly clearexampleof the benefitsthat canbe gainedfrom adding
derived clausesWe seethatperformingthe necessaryesolutionsas
a prepro@ssingstepcancorvert an encodingthatwill actasFCin
SAT into onethatcanperformMAC.

4 Implementation and Experimental Design

| implementedhetranslatorinto SAT in GNU CommonLisp. Each
constraintwasoriginally presentedsa list of conflicts,from which
the translatorhad to constructthe suppat setsandthe clausegshat
arise from the suppat sets.The only issuewhich involved some
slight carewasto ensurethatthe translationwas still performedin
time O(ed?). To do this, ad x d matrix was constructedor each
constraint,and zeroed.Eachconflict was enteredin turn: whenall
conflictshave beenencounteredwe cancalculatethe suppat setsby
going througheachrow and column of the matrix. The first stage
takestime propational to the numbe of conflict¢ andthe seconds
time propationalto d x d.

Becausef the availability in the public domainof excellentSAT
solvers, my translatorwrote out files in Dimacsformat for input to
one of thesesolvers.| consideredusing Grasp,Satz,and Chaf. In
my experimentakesultsl reporton the usageof Chaf [16]: of these
threeit wasusuallythe mosteffective, oftenby alarge mamgin.

Themainpurpcseof theexperimentgpresentedhereis to studythe
practicaleffectivenesof, first, establishingAC in a binary CSPvia
SAT, andsecondsolving binary CSP5 usingthe support encoding
This aim hassomesignificanteffectson the experimenal design.

Themainmeasure have usedthroughait is cputime. While noto-
riously problematicijt is the fundamentalnit of measuremerasfar
aspracticalproblemsolvingis concerned It is importantto consider
thetime necessaryo dothetranslationof the CSPinstanceThiswas
measuredstheruntime of my Lisp translator| do notincludethe
timetakento write outthe SAT clausesl assumehatin aproduction
systemonewould passthe constructectlausesnternally For Chaf,
| reportthe cpu time asreportedby the Unix system,asthis often
seemedo be significantlygreaterthanthe time reportedby the pro-
gram. This doesmeanthatthe time to readin the Dimacsfile had

2 This needsaslight optimisaion. A singlematrixwasusedfor all constaints
to save spaceallocaion. The entry for a given pair (¢, j) wasthe number
of the mostrecent constaint examined contaning this conflict, to avoid
reseting all entriesto 0.

to be counted In experimerts belaw, | reportthe run time usedby
Chaf, andthetotal time whenthatis addedto thetranslationtime.

Theexperimentd reportuserandomlygeneratednstanceswhile
thismeanghattheinstancesrenot of practicalimportancewe have
anunlimitedavailability of testinstancesMore importantly we have
minimal dangerof overfitting if instancegrom a phasetransitionare
used.With colleagwes| have recommende using ‘flawless’random
CSP5sto ensureanasymptotigphaseransition[9]. | do notuseflaw-
lessinstancesereasthey areguaranteedo be arc consistentwhile
my focusis ontheestablishmerandmaintenane of arc-consistenc
Instead usedthe (flawed)‘model B’: in theclass(n, d, p1, p2) with
n variablesof domainsized, we chocsea randomsubsebf exactly
pin(n — 1)/2 constraintseachwith exactly p.d* conflicts.

5 Establishing Arc Consistency

Propagatiorin supportclausess optimal with respecto establish-
ing AC in the sameway that AC-4 is optimal [15], i.e. in the worst
casetime compleity. AC-4 is not usedin practicebecauset is too
expensve to build its datastructuresandthenmaintainthemduring
searcH19]. It seemghattranslatiorinto SAT might suffer from sim-
ilar problems. investigatedhis experimentally studyinghow long
it takesto establisharc consisteng usingthe supportand at-least-
oneclausesput omitting the at-most-one&lausesTheorem2 shavs
thatarcconsisteng is establishedvhenunit propagtionstopsin this
case.Unfortunately the run time up to this point is not reportedby
Chaf: we only have theruntime to provide afull solutionor to fail.
For-arcinconsisteninstanceshisis the samething from Theoren?.
For arc-consisteninstanceshowever, theruntimesreportednclude
the additionaltime usedto searchfor a full assignmehcorrespod-
ing to arc-consistendomainsin the senseof Corollary 3. However,
Chaf never searchea@xtensiely, andcomparisorwith timesfor arc-
inconsistentasesuggestethattheruntimesarenotdramaticover-
estimates- perhap$0% at most.

For comparisorwith thestateof theartin AC solving,| performed
similarteststo thoseperformedoy BessereandRegin usingAC2001
[2]. They useda Pentium300MHz comparedo my Pentiuml1GHz,
and kindly ran a benchmarkig testto confirm that the machinel
usedwasabou threetimesfasterIn thecaseof (150, 50), testswere
for problemshefore,during,andafterthearcconsisteng phasetran-
sition [8], asindicatedby the probalility given. Sampleswveresize
50. | performedonenew test,with samplesize 99, of the (100, 10)
classat its solubility phasetransition,for comparisa with the next
section.

Tablel. Performane of encodhgsonAC in binary CSP5. Times(in
secondsyivenfor AC2001, whereavailable,areasgiven by Bessereand
Regin, onamachire & 3 timesslower thanusedfor new experiments.

Class prob(AC) | AC2001 ACin SAT
‘ ‘ Chaf  Total
(50,50,1225,0.8752) 0.44 0.61 1.27 7.36
(150, 50, 500, 0.5) 1 0.05| 177 6.07
(150, 50, 500, 0.9184)  0.50 0.34 050 292
(150, 50, 500, 0.94) 0 0.16 0.39 259
(100, 10, 250, 0.55) 1 - 0.05 0.13

Tablel shavstheresults Runtimesfor AC in SAT aregivenwith-
out andincludingtranslationtime. Giventhe fastermachineused,it
cantake up to about30 timeslonge to establishAC in SAT in the
phasetransition.Also, we do not seeeasybehaiour away from the



AC phasetransition,makingrun timesevenworsein the undecon-
strainedregion. This is clearly not the bestway to establishAC in

CSPinstancesOn the other hand, performane is not unberably
badwith amaximumof afew secondsandwe knowthatresultswill

scalewell becawseof the optimality result.

6 Performanceon Hard CSPInstances

It was unlikely that translationinto SAT would be a good way of

establishingAC becauseao searchis involved. But modernsolvers’

optimisedimplementationsandintegratedtechniquessuchasback-
jumping andlearning,arelikely to meanthat solutionof hard CSP
instancesvill bemorecompditive. This alsoenablesneto compare
performanceof the supportencodng with thedirectencaling.| per

formedtestson problemswith domainsized = 10, averagedegree
5(i.e.p1 = 5/(n — 1)) andvaryingn andpz, asusedpreviously to

compareMAC andFC by Grant& Smith[10].

10000

+
o+
+ o+
-
XKty
1000 N ?‘X&X . 1
. + g *d X 4t ++
+ + + X XX +
W *mer et ++*+++++ U » &g& ++++ﬁ+ *, ++
ﬁ 0000000000000 yx& T
* * X
M o] s
100 |- * s Kot ]
o o P
DDM% a 56050
* o *
%%D o
*
o x
o
o KK
10 5 1
o]
+ Direct encoding, Max [a]
x  Direct encoding, mean
* Support encoding, Max o
o Support encoding, mean *
1k 4
o
I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure2. Decisionsin Chaf (y-axis)plottedagairstp, (x-axis).

Figure2 shavs how mary decisionsareneededn averageandin
the worst caseby Chaf working on the two encodngs for varying
p2 atn = 50. Sampleswere size 100 at eachpoint. We seethat,
aswe would expect, the suppat encodingneed much lesssearch
thanthe directencoding In fact,the maximumat eachpoint of the
supportencodings lessthanthemeanof thedirectencoding Notice
thatfor p» > 0.7, no searchdecisionsat all are necessaryn the
supportencodng. Thisis becausell instancesverearc-incorsistent.
As Theorem2 requires,when an instanceis arc-inconsistentunit
propagatiorprovesunsatisfiabilitywithoutary branchingdecisions.

Figure 3 shawvs the meanrun time, with andwithout translation,
neededfor thesesolutionsin the two encoding. The first point to
noteis the very small totals, with the meannever above 0.35sfor
eitherencodng ona300MHzPentiumThis confirmsthattranslation
into SAT togethemwith Chaf is aseriousechnoloy for solvinghard
randombinary CSP5. In mostregionsthe direct encodng is faster
to solve in Chaf, althoudh at the peakin compl«ity aroundp, =
0.55, we seethatit becomesignificantlymoreexpensve. Including
translationtime, the direct encaling is usually better but doesdo
worsethanthe supportencodng at the very hardespoints,andalso
in thevery overconsrainedregion.

As weincreasehe problemsize,the supprt encodng comesinto
its own. For n = 100, p» = 0.55, with 39% solubility, the sup-
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Figure3. Runtimein Chaf (y-axis) plotted againstp, (x-axis).

portencodng takesan averageof 0.82s(0.90stotal) comparel with

2.255(2.29stotal)for thedirectencodingonalGHzPentium Chris-
tian Bessere very kindly ran somecomparisonexperimentsusing
MAC2001,i.e. the MAC algorithmusingAC2001internally[2]. At

p2 = 0.55, with a sampleof size50, he obtainedcomparablesolu-
bility of 40% with a meanrun time 0.48s.However, ashis machine
is abou 3 timesslower thanmine, this shavs that translationusing
thesupport encodng andsolutionin Chaf is about5-6 timesslower
thanthe stateof theartusingCSPtechniqes.

It is reasonabléo concluce thattranslatinginto SAT via the sup-
port encodng is an effective way of solving hard randombinary
CSP& We have the additionaladvantag of automaticallybenefit-
ing from ary futuredevelopmensin SAT solverswithouttheneedto
reinventthe wheelintegratingnew ideasinto CSPsolvers.

7 Performanceof WalkSAT

The mostremarkableaspeciof the supportencodiry is its improved
performanceor local search As the encodingwas designedo en-
force arc consisteng in a completealgorithm, the resultspresented
above usingChaf areperhapsotsurprising.Thereseemsio apriori
reasorto expectthatanencodingdesignel for strongerpropajation
shouldalsobebetterfor local searchThis, however, is the case.

Theinstanced testedwere the 39 satisfiableinstancesfound in
the(100, 10,0.0505, 0.55) dataseteportedonabove. Thealgorithm
usedwas Hooss ‘rnovelty+’ variantof WalkSAT. This hasthe ad-
vantagethatthe max-flips parametedoesnot seemto be critical to
performanceso it canbe setto somevery large numter, in these
experimentslos, with 100 restartson eachinstance .However, the
‘noise’ parametep hasto beatleastroughy optimised Performance
atp = 0.5, themostcommony usedvalue,canbe very misleading
if it is optimal for one problemclassbut not for the other Equally,
it is importantto avoid overfitting. To find a compromisebetween
thesetwo dangers| followedamethodlogy recommenddby Hoos
[13]. | tested3 instancesn eachof the two encodingsat noiseval-
ues0.1,0.2, ..., 0.9 with max-flipsonly 107 and10 restartsThese
smallvaluesmeanthatsignificantlyfewer flips wereusedoptimising
p thanwereallowedfor thereportedexperimenton asingleinstance.
The optimal parametersverep = 0.6 for the supportencodirg and
p = 0.4 for the directencoding For the seconday noiseparameter
in rnovelty+, | usedthe defaultvalueof 0.01.
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Figure4. Performameimprovementfactor in WalkSAT (y-axis) of
supportencodig over direct encaling, againstmeanflips in support
encodng (x-axis).Log scaksareusedbeauseof the two outliers.

WalkSAT performsdramaticallybetteron the supportencodng
thanon the direct encodng. Figure 4 is a scatterplot: it shovs the
averagenumberof flips usedin the suppat encoding plottedagainst
the factorthis needso be multiplied by to give the averagenumber
of flips until succesén thedirectencodirg of thesameinstanceThe
minimum factorwas 2.34, so the bestthat the direct encodng did
wasto take morethantwice asmary flips asthe supportencoding
Theworstwas922 timesmoreflips. The median(not influencedby
the outlier) was a factor of 16 improvemen. The direct encodng
wasableto searchabou 30% moreflips persecoml, but the median
speedupn cputime wasstill 12-fold.

In raw performanceerms themediantime (averagedverthe 100
restarts)to solve eachinstancein the suppat encodingwas 0.94s,
althoughthe maximumwas57s.Apartfrom this lastoutlier, this per
formanceis competitve with the solutionsfound by Chaf, which
hada medianof 0.26son the solubleinstanceslt seemshatthereis
muchscopefor extendingearlierstudiesof local searchin encoakd
versionsof CSP5[4, 12] in thelight of thesenew results.

I canonly speculatevhy this encodings sogoodcomparedo the
directencaling. Onereasormaybethatsuppat clauseswith upto d
literals,arelargerthanconflict clauseswith 2 literals.Largerclauses
will be satisfiedmore of the time and might thereforemisleadthe
searchprocesdess.Anotherfactormay be the removal of the very
strongbiasto falsity in the direct encodng, in which only the at-
least-oneclausescontainpositive literals. Literals occurin suppat
clauseswith both polarities,and this may prevent searchresetting
variablegto falsevery soonafterthey becometrue.

8 Conclusions

I have studied Kasif's idea of encodirg suppat information in
clausesnsteadof conflictinformation.Unit propagatiorin the SAT
instanceestablishesrc consisteny, andit doesthis in the optimal
worst-caseime for establishingarc consisteng usingary possible
techniqueHowever, in practicethis doesnot seento be compditive
with the stateof the art for establishingarcconsisteny.

| alsopresentedhe ‘suppat encodirg’ of binary CSP5into SAT.
| provedthatthestandardP algorithmin the SAT instanceperforms
thesamesearclthatMAC doesin theoriginal CSRP For solvingprob-
lemsratherthanjust establishingconsisteng, the support encodng

performsvery well. It is ableto solve hardrandomlygenersed in-
stanceswith searchspacesof size 101% in lessthan a secondon
averageusingChaf. Moreover, thelocal searchalgorithmWalkSAT
runsan orderof magnituc fasteron thesehard instanceasingthe
supportencodingthanwith the directencoding
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