
Improving the Evolutionary Coding
for Machine Learning Tasks

Jesús S. Aguilar–Ruiz
�

and José C. Riquelme
�

and Carmelo Del Valle
�

Abstract. The most influential factors in the quality of the solu-
tions found by an evolutionary algorithm are a correct coding of the
search space and an appropriate evaluation function of the potential
solutions. The coding of the search space for the obtaining of deci-
sion rules is approached, i.e., the representation of the individuals of
the genetic population. Two new methods for encoding discrete and
continuous attributes are presented. Our “natural coding” uses one
gene per attribute (continuous or discrete) leading to a reduction in
the search space. Genetic operators for this approached natural cod-
ing are formally described and the reduction of the size of the search
space is analysed for several databases from the UCI machine learn-
ing repository.

1 INTRODUCTION

In problems related to supervised learning, the decision rules are es-
pecially relevant. Given a database with continuous and discrete at-
tributes, and a class label, we try to find a rule set that describes the
knowledge within data or classify new unseen data. When the attri-
bute ��� is discrete, the rules take the form of “if �������
	��

�������
�	����
then ��� ����� ”, where the values �
	��

����
��
�	���� are not necessarily all
those that the attribute can take. When the attribute ��� is continu-
ous, the rules take the form of “if ������� � ��
������ then ��� ����� ”, where
� � and ��� are two real values belonging to the range of the attribute
and � � ����� . For example, we assume that we have an hypothetical
database that associate the weight (in kilograms), height (in meters)
and eye color of a person with being or not candidate to have ac-
cepted a paper in a relevant conference. The database is a sequence
of tuples such as (83, 1.71, green, no), (71, 1.62, black, yes), etc.
A rule describing the relationship among attribute values and class
might be:

if weight � [60, 70] height � [1.60,1.68] and eye color is blue
then he/she is a candidate

The finding of these rules can be tackled with many different tech-
niques and the evolutionary algorithms are among them. Two critical
factors have influence on the decision rules obtained by an evolu-
tionary algorithm: the selection of an internal representation of the
search space (coding) and the definition of an external function that
assigns a value of goodness to the potential solutions (evaluation).

In this work, we are especially interested in the coding, i.e. in find-
ing a method to accurately encode the genetic information of the in-
dividuals. The coding method, named “natural coding” because it
uses natural numbers, needs only one value (gene) per attribute, con-
tinuous or discrete. In case of continuous attributes, every interval

� Department of Computer Science, University of Seville, Spain,
e–mail: ! aguilar,riquelme,carmelo " @lsi.us.es

is encoded by one natural number. In case of discrete attributes, one
natural number identifies any combination of attribute values. This
coding needs a new definition for the genetic operators in order to
avoid the convertion from natural numbers to the values of the orig-
inal space (from genotype to phenotype). These definitions are pre-
sented an it is shown in the paper, the evolutionary algorithm can
work directly with the natural coding until the end, when the individ-
uals will decoded to decision rules. Our approach leads to a reduction
of the search space size, what has a positive influence on the conver-
gence of the evolutionary algorithm.

2 MOTIVATION

Assuming that the interaction among attributes is not linear, the size
of the search space is related to the number of genes used in the
coding of the problem. For an individual with size # , the size of the
search space is $&%� '(�() * �) , where * is the alphabet. Traditionally, the
same alphabet has been used for every attribute, mostly the binary
alphabet, so that ��+-,�.0/) *1) % .

To find an adequate encoding to the problem is difficult, at least
two recommendations try to be satisfied [10]: coding should have
meaningful building blocks and each gene locus should have as few
alternatives as possible. The Goldberg’s suggestions are especially
taken into account in our approach.

Initially, all the studies dedicated to evolutionary algorithms, be-
ginning by the Holland’s [12], made use of binary coding. The foun-
dations established by Holland are based on the binary coding and
from these every theoretical study have come by the same way. The
simplicity and, above all the similarity with the concept of Darwinian
analogy, have advanced its theoretical use and practical application.

As regards real coding, theoretically, the main problem is the size
of the search space. Since the size of the alphabet is infinite, the
number of possible schemes is also infinite and, therefore, many
schemes syntactically different but semantically similar will coex-
ist. Many approaches gathered in the bibliography, some of them
based on Evolutionary Strategies, use real coding for machine learn-
ing tasks [8, 11, 1, 3] or for multiobjective problems [6]. Any value
can be coded with an only (real) gene, but this could be avoided us-
ing a discrete–real search space, solely allowing the use of certain
real values. With this solution the size of the search space is finite
and therefore the number of schemes as well.

The main inconvenience of this coding is that it allows genes tak-
ing any value of the range, when not all the values would be good as
limit of an interval. For example, the C4.5 tool [16] only takes as pos-
sible values for the nodes of the decision trees the half–points among
two consecutive values of an attribute. This idea is used to code an
individual of the genetic population so that only hypothetical good

values will be allowed as conditions over an attribute in the rules.
To clarify this idea, let assume that the next dataset is sorted by the

attribute weight.
(57, 1.65, blue, no) (59, 1.60, brown, no)
(60, 1.63, green no) (63, 1.58, brown, yes)
(64, 1.62, black, yes) (68, 1.65, black, no)

In a traditional evolutionary coding for supervised learning based
on the Michigan approach [12], a rule is a decoded individual. The
left–hand side of the rule is a set of conditions for each attribute: if
it is continuous, the condition is formed by two float values; and if
it is discrete, the condition is a set of boolean values. Therefore, the
interval obtained for the weight would be defined by two values [� � ,
� �], where � � and � � are the lower and upper bound of the interval,
respectively, � � � � � , and # � � � � and � � ��� � , where # � and

� � are
the lower and upper bounds of the range of the attribute.

C4.5 will investigate as possible values: 57, 59.5, 61.5, 63.5, 66,
etc. In other words C4.5 is applying an unsupervised method of dis-
cretization since the class label is not taking into account in this pro-
cess. The reduction of the number of values is only determined by the
number of equal values for the attribute being considered. This unsu-
pervised discretization is not a good choice to analyze possible limit
values (either using entropy or any other criterion) for the intervals.

A number of remarkable supervised discretization methods has
been approached in the bibliography. Among them, the Holte’s 1R
[13] and the method of Fayyad and Irani [9] were compared to the
one used in this work. Our supervised discretization method, named
USD (Unparametrized Supervised Discretization), is very similar to
1R, although it does not need any input parameter. USD is based on
projections of attribute values [2]. However, as the aim of this method
is not to find intervals but cut–points to be used as limits of the further
decision rules, we assume that any supervised discretization method
would be appropriate for our purpose. As we will see below, if the
discretization method produces � intervals, then there will be �����
cutpoints and will therefore be

�
	 ��� ��
� possible intervals for the de-
cision rules.

Our goal consists in observing the class along the discretization
method and decreasing the alphabet size. Following the example
above, we can observe that it is necessary investigate only the val-
ues 57, 61.5 and 66, because they are values which produce a change
of class. Therefore, this coding allows to use all the possible intervals
defined by every two cutpoints obtained by means of discretization.

3 NATURAL CODING

In this section we propose a new coding together with their genetic
operators, which will be presented in two independent subsections:
discrete and continuous attributes, respectively. This coding has been
named “natural” because it only uses natural numbers to represent
the set of values for continuous and discrete attributes which can take
part of the decision rules.

Through the text, we will use a very simple database in order to
explain the application of the genetic operators. This database has
one discrete attribute with values � red,green,blue � and a continuous
attribute with range [1.1,6.2].

3.1 DISCRETE ATTRIBUTES

Several systems exist that learn concepts (concept learners) that use
binary coding for discrete attributes: GABIL [7] and GIL [14] are
two of the most known. When the set of attribute values has many
different values, the length of the individual is very high so that a

reduction of the length might influence positively on speeding up the
algorithm.

From now on, we will consider that a discrete attribute is coded by
an only natural number (one gene) and we will analyse how to apply
the crossover and mutation operators in order to the new values retain
the meaning that they would have had with the binary coding. The
new value will belong to the interval � ��
���� ������� � , where) �) is the
number of different values of the attribute. With the natural coding
for discrete attributes a reduction of the size of the search space is not
obtained, but it is guaranteed that the length of the individual does
not take part in the computational cost associated with the genetic
operators.

3.1.1 Natural mutation

Following the database example, when a value is selected for muta-
tion, for example 3 �������
� = � green, blue � , there are three options:����� , ����� and ����� , equivalent to the numbers 7, 1 and 2, respectively.

Firstly, we assign the natural number corresponding to each binary
number. The mutation of each value would have to be some of the
values shown in Table 1. The values appear in rows, from less to
more significant, from top to bottom, respectively.

Table 1. Values obtained after mutation.

0 1 2 3 4 5 6 7 significant 1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5!

significant 4 5 6 7 0 1 2 3

For example, from 0 the values 1, 2 or 4 could be obtained.

Definition 1 (natural mutation) Let " be the value of a gene of an
individual, then the natural mutation of the �$#&% bit of " , denoted by' �$(�)�&"*� , is the natural number produced by changing that �$#&% bit.' �$(���&"*� /,+-".�/� �
0 ��132 � � �/� �.4 "� �65 (1)

where � � �7�
���
����
��
) �) � ;) �) is the number of values of the at-
tribute; ' �$(���&"*� are the possible mutated values from " ; % is the
rest of the integer division; and 8�9 : is the integer part.

Example 1 For example, according to Table 1, the possible values
for " /�; (101) will be 4, 7 y 1.' �$(���-;�� /<�-;=�>�@?
� 2 � � �>� �BADC�FE�G /�H (100)' �$(� �-;�� /<�-;=�>� � � 2 � � �>� � ADC�JI)G /�K (111)' �$(ML��-;�� /<�-;=�>� � � 2 � L �>� LNADC�JO)G /P� (001)

Definition 2 (mutation set) Let " be the value of a gene, we define
mutation set, Q �$(��&"*� , as the set of all valid mutations for a natural
value.

Q �$(��&"*� / � ���R
� '(�

' �$(���&"*� (2)

where ' �$(���&"*� is the natural mutation of the ��#&% binary bit.

Example 2 From Example 1, Q �$(��-;�� /���H�
�K�
�� � .
Note that every discrete attribute value set represented by a natu-

ral number can be mutated by using Equation 2, generating another
natural number which represents a new discrete attribute value set.
Therefore, binary values does not appear in the population. As it is
shown in Example 2, from the value 5 (� red,blue �), the possible val-
ues are 4 (� red �), 7 (� red,green,blue �) and 1 (� blue �).

3.1.2 Natural crossover

Definition 3 (order–� mutation class) Let � be a set of natural
numbers, let us define the order–� mutation class, and it will be de-
noted as � Q �$(����B�-� � , as follows:

� Q �$(����B�-� ? /��
� Q �$(����B�-� � /

R
����� Q �$(��&"*�

...
� Q �$(����B�-� � / Q �$(+ � Q �$(����B�-� � 0 ��1 (3)

Example 3 From Table 1, let Z= � 1 � , then the order–0, order–1,
order–2 and order–3 mutation class of Z will be,

Order–0: � Q �$(�� �7� �@�-� ? / �7� �
Order–1: � Q �$(�� �7� �@�-� � / �7�
F��

	�
 ;��
Order–2:
� Q �$(�� �7� �@�-� � /�Q �$(��J�
��� Q �$(����7��� Q �$(��
	7��� Q �$(��-;��
therefore, � Q �$(�� �7� �@�-� � /��7�
 ��
�	�
�;�
 ��
FH�
 K��
Order–3: � Q �$(�� �7� �@�-� L / �7�
F��

	�
 ;�
���
FH�
 K�

���

Definition 4 (natural crossover) Let " � and "�� be the values of
two genes from two individuals � � and ��� for the same attribute.
The gene of the offspring, ���������7�&" �
F"��@� , will be obtained from
the values belonging to the first non–empty intersection among the
mutation classes. Let (�� � , and � # / � Q �$(��-Q �$(��&" ���M�-� #��
� Q �$(��-Q �$(��&"����M�-� # , then

���������7�&" �
M"���� /���, ��� #) � #��/! �
#" ��� ��
 �1�/(
$�&% /')((4)

Example 4 Let assume that we have the values 0(000) and 3(011).
We include the current value into the mutation set since the offspring
could be similar to the parents. Thus, � mutates to �
��
��
���
MH�� and
	 mutates to �*	�
���
��
�K�� . Both genes share 1(001) and 2(010), then
any of them could be the offspring from 0 and 3. It is possible that the
intersection is the parents (for example, for 1 and 3, as the schema is
the same for both, 0*1).

Example 5 Let assume that we have the worst case, the values
0(000) and 7(111), which have no bits in common.

" �(/���+ Q �$(����7� /��
��
��
���
MH��"�� /�K,+ Q �$(��-K�� /��@K�

��
�;�
�	��
� Q �$(��-Q �$(����7�M�-� ? /��
��
��
 ��
FH��
� Q �$(��-Q �$(��-K��M�-� ? /��@K�

��
 ;�

	��
Then, ��? /'
� Q �$(��-Q �$(����7�M�-� � /��
��
��
 ��
FH�
�	�
�;�
����
� Q �$(��-Q �$(��-K��M�-� � /��@K�

��
 ;�

	�
MH�
���
�� �
Therefore, � � �/'

The intersection will be � 1, 2, 3, 4, 5, 6 � , and any of them will be
the valid offspring for ���������7����
 K�� .
3.2 CONTINUOUS ATTRIBUTES

Using binary encoding in continuous domains requires transforma-
tions from binary to real for every attribute in order to apply the eval-
uation function. Moreover, when we convert binary into real, the pre-
cision is being lost, so that we have to find the exact number of bits
to eliminate the difference between any two values of an attribute.
This ensures that a mutation of the less significant bit of an attribute

should include or exclude at least one example from the training set.
Nevertheless, the real coding is more appropriate with real domains,
simply because is more natural to the domain. A number of authors
have investigated non–binary evolutionary algorithms theoretically
[4, 15]. Two float values would be needed to express the interval of a
continuous attribute. For example, for a database with two attributes,
continuous and discrete ones, an individual of the population could
be as that that is depicted in Figure 1.

1.4
 0
1
0
2.6
 1
1

attribute

continuous

attribute

discrete

at
1
:
 [1.1,6.2]

at
2
:
 {white
, red, g
reen, b
lue
, b
lac
k}

 if at
1
 [1.4,2.6] and at
2
 {red,b
lue
,white} then Class 0

0

Figure 1. Example of coding.

In case of continuous attributes, the coding is less accurate since
the number of values that the attribute can take in its real range is infi-
nite. The search space is therefore larger, so that reducing this search
space would make possible a faster convergence of the algorithm .
Then, the first step consists in trying to diminish the cardinality of
the set of values of the attribute.

3.2.1 Diminishing the cardinality

Firstly, we will analyse what intervals inside the range of the at-
tribute tends to appear as intervals for a possible decision rule ob-
tained from the natural coding. As mentioned before, this task could
be solve by any supervised discretization algorithm, for example, the
well–known method ��- proposed in [13]. Once the vector indicating
which are the boundaries for the intervals is obtained (vector of cuts),
we assign natural numbers to any possible combination, as it appears
in Table 2.

Example 6 Let assume from the database example that the
output of the discretization algorithm is the vector of cuts
�7� � �

	�� K�;�
 H�� .7;�
�;�� ��

��� ��� . The possible intervals to be generated
from those values are shown in Table 2. Each interval is identified
by a natural number, for example, the interval � 	�� K�;�
 H�� .7;
� will be
referenced by the natural number 6.

Table 2 shows 5 cutpoints, which can generate 10 intervals. The
number of intervals defines the size of the alphabet for such attribute
and depends on the number of cuts / , exactly) *1) /10 	 0 0 ��
� . To know
the maximum number of cuts that an attribute should have in order to
consider interesting this coding is / �32 	@" , where " is the number
of different values.

In Table 2 a natural number (in bold), beginning by 1, from left
to right and from top to bottom, is assigned to each interval. These
“natural” numbers will help us to identify such intervals later.

3.2.2 Transitions

Once the necessary number of cuts has been calculated, we know the
size of the new alphabet) *1) . From now, we will analyse the mutation
and crossover operators for this coding.

Definition 5 (row and column) Let " be the value of the gene, and
let � and � be the row and the column, respectively, where " is located
in Table 2. The way in which � and � are calculated is: (% is the
remainder of the integer division)

�1/54 0 �0 0 � ��� ��/<�&" �>�
� 2 �6/=�/�
�*� � (5)

Table 2. Intervals calculated for the continuous attribute with range � ��� ������� �	� .
Cutpoints 3.75 4.85 5.2 6.2

1.1
�� � � � �

	�� K�;
��
�� � � � �
 H�� .7;
� ��� � � � �
�;�� �
� ��� � � � �

��� �
�
3.75 - ��� � 	�� K�;�
 H�� .7;
����� � 	�� K�;�
�;�� �
� ��� � 	�� K�;�
 ��� �
�
4.85 - -
 ��� � H�� .7;�
�;�� �
��
���� � H�� .7;�
 ��� �
�
5.2 - - -
 ��� � ;�� ��
 ��� �
�

Example 7 Let " �(/�� and "�� /'. . Then

���-��� /P� ���-��� /�� ���
.7� /�� ���
.7� /�H
That is to say, 2 is in row 1 and column 2, and 8 is in row 2 and

column 4.

Definition 6 (boundaries) Let " be the value of the gene, we named
boundaries of the value " to those values from Table 2 that limits the
four possible shifts (one by direction): left, right, up and down, and
they will be denoted as ��� . , � � + , � ��� and �	��� , respectively, and they
will be calculated as:��� .)�&"*� /<�6/=�/�
��� � �>�
�*� �� � +F�&"*� /<�6/=�>�
�#�� ��� �&"*� / ��	�����&"*� /<�6/=�>�
��� �D�>�
� � �

(6)

Example 8 From Example 7,��� .)�-��� /P� � � +F�-��� /�H!� ��� �-��� / �"�	�����-��� /'���� .)�
.7� /'�#� � +F�
.7� /'.#� ��� �
.7� /�H!�	�����
.7� /P���
That is to say, 2 could reach up to 1 to the left, up to 4 to the right,

up to 2 to the top and up to 6 to the bottom; 8 could reach up to 6
to the left, up to 8 to the right, up to 4 to the top and up to 16 to the
bottom.

Definition 7 (shifts) The left, right, up and down adjacent shifts for
a value " will be obtained (if possible) as follows:

� .%$�(��&"*� / ' � � �&��� .)�&"*�
J" �>�
�
� +&')(�(��&"*� / ' +�"3�&� � +F�&"*�
F" ���
�
��� �&"*� / ' � � �&� ��� �&"*�
�" � / ���
����%*B"3�&"*� / ' +�"3�&�	�����&"*�
F" � /D�>�
�

(7)

We define (��� +-, �@"6(��� and 	�.��
(+ � ��� shifts as all the possible shifts
as for row as for column, respectively, where " is placed, including" . (�����&"*� / 0 0 �R

� '(�
' � � �&��� .)�&"*�
��6/=�/�
��� � �>�
�*� +�� (8)

	�.����&"*� / 0 0 �R
� '(�

' +�"3�&�	�����&"*�
��6/D�>�
��� +*�/�
�*� ��� (9)

Example 9 From Example 8, the adjacent shifts of 2 and 8 will be:
left(2)=1 right(2)=3 up(2)=2 down(2)=6
left(8)=7 right(8)=8 up(8)=4 down(8)=12(�����-��� /��7�
���

	�
MH�� 	�.����-��� /��@��

���(�����
.7� /��*��
�K�

.�� 	�.����
.7� /���H�

.�
��
��
������

3.2.3 Natural mutation

A mutation consists in selecting a near interval to that that has the
value " . For example, observing Table 2, if the number of cuts is
equal to 5 (/ / ;), and " / K , there are four possible mutations
� 3,6,8,11 � ; however, if " /PH , there will be two possible mutations
� 3,8 � .

Definition 8 (natural mutation) Let " be the value of the gene, the
natural mutation of " , denoted by Q �$(��&"*� , is any near value to " by
using the shifts and distinct from " .

Q �$(��&"*� � ���) � � � ' � 	6�&"*� � "(��� (10)

where ' � 	6�&"*� / � .%$�(��&"*��� � +&')(�(��&"*� � ��� �&"*� �+���%*B"3�&"*� .
Example 10 Thus, Q �$(��-��� � � �7�
���
�	�

��� � �@��� � , i.e., Q �$(��-��� �
�7�

	�
���� . Now, one of the three values is selected.

3.2.4 Natural crossover

Definition 9 (natural crossover) The natural crossover between
two values " � and "�� , denoted by ���������7�&" �
M"���� is obtained as fol-
lows:

���������7�&" �
F"��@� �
��+�+ (�����&" ��� � 	�.����&"��@� 1 � + (�����&"���� � 	�.����&" ��� 1�1 (11)

We can observe in Table 2 that the nearest values are in the in-
tersection between the row and the column where both values being
crossed are placed. For example, the nearest value to 1 and 6 is 2;
the nearest value to 6 and 12 is 8. Only when the values " � and "��
are located in the same row or column the interval will be inside the
other.

Example 11 Thus,
���������7�-��
�.7� �

� � � �7�
���

	�
MH�� � ��H�

.�
��
��
������ ��� � �*��
�K�

.�� � �@��

��� � � ,
i.e., ���������7�-��
�.7� � ��H�

��� .
Now, we can select one or more of the values generated by the
crossover operator.

4 DISCUSSION

For the database example, a possible individual of the genetic popu-
lation is shown in Figure 2. This individual information means if � �
is green or blue and � � is in � 	�� K�;�
�;�� �
� then class=1.

In Table 3 are shown the databases from the UCI repository [5]
used in the analysis. In case of continuous attributes, to calculate the
number of genes (length #) for the binary coding Equation 12 was
used, where � � and � � are the lower and upper values of the domain
and , is the smaller difference among any two values of the attribute.

/
-�. / �10 �D� � � � � �,"243 (12)

Discrete attributes were encoded using a single gene for each
value. In the column labelled “Natural” the genes for binary cod-
ing which should be used are indicated as the number of attributes of
the database. It is noteworthy that the length of individuals has been
considerably decreased. Nevertheless, as we will se below, the most
important fact is the decreasing of the size of the search space.

3 7 1

Genetic Population Vector of cuts

1

7

6

4

11

8

12

2

16

3

[1.1,3.75]

[3.75,5.2]

[3.75,4.85]

[1.1,6.2]

[4.85,5.2]

[3.75,6.2]

[4.85,6.2]

[1.1,4.85]

[5.2,6.2]

[1.1,5.2]

class
continuous attribute

discrete attribute

0

5

4

3

7

6

1

2

0

1

0

1

1

0

1

0

0

0

0

1

1

1

0

1

0

1

1

0

1

1

0

0

BGR

Figure 2. Example: discrete and continuous attributes.

Table 3. Length: length of individuals of the genetic population for binary
and natural coding. Search Space Size: size of the search space for both

codings, indicated as base–10 logarithms.

Length Search Space Size (
�����

)
Batabase Binary Natural Binary(m) Natural(m)
Autos 366 25 110.2 46.3
Balance 12 4 3.6 3.1
Breat Cancer-W 87 9 26.2 7.1
Cleveland Rating 202 15 60.8 16.3
German Credit 95 20 28.6 25.1
Glass 86 9 25.9 16.4
Hepatitis 264 19 79.5 15.0
Ionosphere 551 34 165.9 75.8
Iris 22 4 6.6 3.7
Led7 14 7 4.2 4.2
Letter 256 16 70.1 30.9
Monk1 17 6 5.1 5.1
Mushroom 125 22 37.6 37.6
Pima 65 8 19.6 18.4
Sonar 757 60 227.9 136.7
Soybean 100 35 30.1 10.5
Tic-Tac-Toe 27 9 8.1 8.1
Vote 32 16 9.6 9.6
Wine 120 13 36.1 23.8
Zoo 134 17 10.8 10.8

As for this last aspect, indicated as logarithms to the base 10, in
column “Binary(m)” appears the number of possible solutions into
the space for the binary coding, which have been obtained from the
length of the individuals. In column “Natural(m)” appears the figure
calculated from the product of all possible combinations of values for
every attribute (discrete values and different intervals for continuous
attributes). In some cases the cardinality of the search space is similar
for both codings due to the absence of continuous attributes in the
database. The improvement of the natural coding with respect to the
binary coding can be observed by simply subtracting exponents.

5 CONCLUSIONS

In this paper a new coding method for evolutionary algorithms in su-
pervised learning is presented. This method converts every attribute
domain into a natural number domain. The population will there-
fore have only natural numbers. The genetic operators (mutation
and crossover) are defined in order to work efficiently with this new
search space, and they use no convertions from the original attribute

domains to the natural number domains, but the evolutionary algo-
rithm works from the begining to the end with natural numbers.

As every attribute, continuous or discrete, use one gene in the in-
dividual of the population, the size of the search space is decreased,
what might allow a faster convergence of the evolutionary algorithm.

6 FUTURE WORKS

Currently, the ongoing experiments show that this natural coding ob-
tains better results (error rate and number of rules) than binary ver-
sions of the evolutionary algorithm. However, the most important
feature is that as a consecuence of the smaller search space size the
computational cost is approximately half.

ACKNOWLEDGEMENTS

The authors are grateful to David Fogel for their suggestions and to
Erick Cantú–Paz for helpful comments. Special thanks to William
Langdon for their constructive criticisms and very valuable discus-
sion. The research was supported by the Spanish Research Agency
CICYT under grant TIC1143–C03–02.

REFERENCES
[1] J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro, ‘A tool to obtain a hier-

archical qualitative set of rules from quantitative data’, in Lecture Notes
in Artificial Intelligence 1415. Springer-Verlag, pp. 336–346, (1998).

[2] J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro, ‘Data set editing by or-
dered projection’, in Proceedings of the

��� #&% European Conference on
Artificial Intelligence (ECAI’00), pp. 251–255, Berlin, Germany, (Au-
gust 2000).

[3] J. S. Aguilar-Ruiz, J.C. Riquelme, and M. Toro, ‘Three geometric ap-
proaches for representing decision rules in a supervised learning sys-
tem’, in Genetic and Evolutionary Computation Conference (GECCO
’99), p. 771, Orlando, Florida, EE.UU., (1999).

[4] S. Bhattacharyya and G.J. Koehler, ‘An analysis of non–binary genetic
algorithms with cardinality

���
’, Complex Systems, 8, 227–256, (1994).

[5] C. Blake and E. K. Merz. UCI repository of machine learning
databases, 1998.

[6] Kalyanmoy Deb and Amarendra Kumar, ‘Real-coded Genetic Algo-
rithms with Simulated Binary Crossover: Studies on Multimodal and
Multiobjective Problems’, Complex Systems, 9, 431–454, (1995).

[7] K. A. DeJong, W. M. Spears, and D. F. Gordon, ‘Using genetic al-
gorithms for concept learning’, Machine Learning, 1(13), 161–188,
(1993).

[8] L. J. Eshelman and J. D. Schaffer, ‘Real-coded genetic algorithms
and interval-schemata’, Foundations of Genetic Algorithms-2, 187–
202, (1993).

[9] U. M. Fayyad and K. B. Irani, ‘Multi-interval discretisation of con-
tinuous valued attributes for classification learning’, in Proceedings of
the Thirteenth International Joint Conference on Artificial Intelligence.
Morgan Kaufmann, (1993).

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, Addison-Wesley, 1989.

[11] F. Herrera, M. Lozano, and J.L. Verdegay, ‘Tackling real-coded genetic
algorithms: Operators and tools for the behaviour analysis’, Artificial
Intelligence Review, 12, 265–319, (1998).

[12] J. H. Holland, Adaptation in natural and artificial systems, Ph.D. dis-
sertation, University of Michigan, 1975.

[13] R. C. Holte, ‘Very simple classification rules perform well on most
commonly used datasets’, Machine learning, 11, 63–91, (1993).

[14] C. Z. Janikow, ‘A knowledge-intensive genetic algorithm for supervised
learning’, Machine Learning, 1(13), 169–228, (1993).

[15] G.J. Koehler, S. Bhattacharyya, and M.D. Vose, ‘General cardinality
genetic algorithms’, Evolutionary Computation, 5(4), 439–459, (1998).

[16] J. R. Quinlan, C4.5: Programs for machine learning, Morgan Kauf-
mann, San Mateo, California, 1993.

