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Abstract. In designing non-linear classifiers, there are important
trade-offs to be made between predictive accuracy and model com-
prehensibility or complexity. We introduce the use of Genetic Pro-
gramming to generate logistic polynomial models, a relatively com-
prehensible non-linear parametric model; describe an efficient two-
stage algorithm consisting of GP structure design and Quasi-Newton
coefficient setting; demonstrate that Niched Pareto Multiobjective
Genetic Programming can be used to discover a range of classifiers
with different complexity versus “performance” trade-offs; introduce
a technique to integrate a new “ROC (Receiver Operating Character-
istic) dominance” concept into the multiobjective setting; and sug-
gest some modifications to the Niched Pareto GA for use in Genetic
Programming. The technique successfully generates classifiers with
diverse complexity and performance characteristics.

1 INTRODUCTION

A variety of powerful non-linear classifiers are now in use, including
neural networks, support vector machines, and fuzzy logic. These
techniques trade off various desirable properties, including: the abil-
ity to specify prior knowledge and to constrain the functional form;
the performance of the classifier; the comprehensibility of the in-
ferred model; the complexity of the model. Optimizing the coeffi-
cients in a model of fixed architecture is non-trivial, but well under-
stood; however, methods to automatically select the “model architec-
ture” are not as well developed.

In this paper we describe how to infer logistic polynomial classi-
fiers, which are concise and relatively comprehensible models com-
pared with popular non-linear alternatives. The technique is suitable
for multivariate problems with moderate numbers of variables.

We use multiobjective genetic programming to infer the polyno-
mial (number and structure of terms), and to sample a range of mod-
els that trade-off two important performance measures: model com-
plexity and classification performance as measured by ROC curves.
We also define a specialised initialisation operator to sample the
Pareto front efficiently, and introduce the concept ofROC dominance
as a key criterion in multi-objective optimization.

2 POLYNOMIAL MODELLING WITH
GENETIC PROGRAMMING

2.1 Polynomial Regression

Many modelling techniques distinguish between thestructureof the
model, which is often fixed by the model designer, andcoefficients
that are adjusted by a learning algorithm. In general, procedures for
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adjusting coefficients are more efficient than those for searching al-
ternative structures. For example, in polynomial regression, we spec-
ify that the predictor has the form given forp(x) in equation 2, then
use linear least squares optimization to determine the values of the
coefficients,ci (although the model is non-linear in the input vari-
ables,xi, it is linear in the coefficients).

For problems with a single input variable, or a very small num-
ber,N , it is possible to include all terms up to some orderP (there
are
PP

j=1
N !

(N−j)!
of orderP ), to optimise the coefficients, then to

remove terms with near-zero coefficients. However, for multivariate
problems with even moderate numbers of input variables the num-
ber of terms is prohibitive, and multivariate polynomials are seldom
used.

Genetic Programming [10] evolves tree-based S-expressions; in
the context of predictive modelling it is known assymbolic regres-
sion. GP is an effective constructive mechanism for inferring expres-
sions, although the ability to determine numeric coefficients is poor.
The standard technique is to include constants as a special terminal
symbol, theephemeral constant[10]. If we restrict the operator set
to {PLUS,MULT}, and the terminal set to the input variables,{xi},
then the GP S-expression may be interpreted as the polynomial form
[12]. The coefficients of the polynomial are inserted, together with
a constant term, and optimized by standard least-squares. For exam-
ple, the GP shown in figure 1, which is expressed in Polish notation
as(∗(+(∗x1x2)x1) x2), translates to the polynomial:

p(x) = c1x1x
2
2 + c2x1x2 + c3. (1)

x
1

x
2

MULT x
1

PLUS x
2

MULT

Figure 1. A simple polynomial Genetic Program

This algorithm neatly divides the model-building task into two
parts: structure inference, for which GP is well-suited; and coeffi-
cient optimisation, at which GP is poor and standard optimisation
techniques are extremely good. The two stages complement one
another; for example, the GP may discover two small polynomi-
als each of which individually performs a successful regression. If
crossover combines both polynomials into the same S-expression us-



ing a PLUS operator, the optimisation algorithm adjusts the coeffi-
cients to weight the contributions. In contrast, if ephemeral constants
are used crossover is usually disruptive.

2.2 Logistic Polynomial Regression

In this paper we extend the GP polynomial regression approach [12]
to classification, albeit at the expense of a more complex optimisation
procedure.

We consider a polynomial logistic model of the form:

f(x) =
1

(1 + e−p(x))
wherep(x) =

X
i

ci

Y
j

x
ti,j

j , ti,j ∈ N+

(2)
– that is, the model consists of a logistic function applied to a poly-
nomial. The logistic function, which has the output range(0, 1),
is appropriate for probability estimation. With a first-order polyno-
mial the model reduces to the standard logistic regression technique,
which is the most appropriate predictive model given normal class
distributions with equal mean and covariance matrices; quadratic or
higher order polynomials are appropriate when the distributions do
not follow this form (e.g. if the classes follow two normal distribu-
tions with unequal covariance matrices, the iso-probability contours
are known to be quadratic). The technique can combine variable se-
lection (by excluding variables from all terms) and model selection,
using a sparse representation of quadratic and higher order equations.

The use of the logistic function makes least-squares optimisation
impossible. To optimize the coefficients by maximum likelihood, we
instead minimize the cross-entropy error function (the derivation in
the context of neural networks is given in [2]):

E = −
X

n

tn log yn + (1− tn) log(1− yn) (3)

wheretn is thenth observed output, andyn thenth prediction.
We can determine the partial differentials of this error function

with respect to the coefficients,ci, by applying the chain rule.

∂E

∂ci
=

∂E

∂(f(x))
.
∂(f(x))

∂(p(x))
.
∂(p(x))

∂(ci)
(4)

The first and second terms differentiate to:

∂E

∂(p(x))
=

�
yn − tn

yn(1− yn)

�
. (yn(1− yn)) = yn − tn. (5)

As p(x) is linear in the coefficients, the remaining term also re-
duces simply, so that:

∂E

∂ci
= (yn − tn)

Y
j

x
ti,j

i (6)

Exploiting the error function and partial differentials, we can de-
ploy any of the known techniques in standard non-linear optimization
to determine the coefficients. We used Quasi-Newton (BFGS) [11],
a very fast iterative technique.

Compared with other non-linear classifiers, such as neural net-
works, the logistic polynomial model is parsimonious, and (if there
are not too many terms) relatively comprehensible. This is critical
in some problem domains, such as medical data analysis, where a
“black box” model cannot be deployed.

3 MULTIOBJECTIVE OPTIMISATION

3.1 Performance and Complexity

Maximum likelihood may be used to optimise the coefficients against
the error function. However, we often desire to optimise a number of
aspects of the model, including: model performance (which may be
best measured by an objective function other than the cross entropy,
such as performance in ROC curve analysis); model efficiency (time
requirements for execution and/or optimisation and memory require-
ments); and comprehensibility. Efficiency and comprehensibility are
often rolled up together intocomplexity, where a lower complexity
model is sought. Lower complexity models also tend to generalize
better, which addresses performance.

Multiobjective optimisation attempts to find models that maximize
a number of objective function measures,M = {m1, m2, ..., mk},
withoutcombining them into a single objective. They are inherently
population based, in that they establish a number of solutions rep-
resenting different trade-offs between objectives. The decision about
acceptable trade-offs between objectives may then be madea poste-
riori , after inference, rather thana priori.

The key concept in Multiobjective optimization is thePareto op-
timal set[1]. Given two models,A andB, we say thatA Â B (A
dominatesB) if A has at least one objective value strictly greater
thanB, and all objective values at least equal toB:

A Â B ⇐⇒ ∀i, mi(A) >= mi(B); ∃i, mi(A) > mi(B) (7)

The Pareto-optimal setconsists of all non-dominated solutions (i.e.
those that are not dominated by any other solution). Multiobjective
algorithms search across aPareto front— the non-dominated subset
of the models found during the search.

3.2 ROC Dominance

Most forms of classifier produce a confidence measure or probabil-
ity estimate, then make a decision by comparing this with adecision
threshold, θ: cases above the threshold are assigned to the positive
class, and cases below to the negative class. The decision threshold
may be set to minimize the overall error rate, to equalize error rates
on the two classes, or with respect to a loss matrix [2] expressing
the relative costs of false positive and false negative misclassifica-
tion (sensitivity and specificity). In some applications (e.g. medical
analysis) we may adjust the threshold to trade-off sensitivity against
specificity; consequently, classifiers that perform well at a variety of
thresholds are desired.

The usual method to characterize classifier performance across the
threshold value,θ, is the Receiver Operating Characteristic (ROC)
curve [13]. This plots sensitivity against 1−specificity, asθ is ad-
justed; for example, in figure 2, model C is inferior to models A and
B at any threshold, whereas models A and B are better at different
points on the curve. This implies that each fits the conditional proba-
bility function more accurately along certain iso-probability contours
than the other. If we are forced to commit to a single model, we may
specify the threshold first, or select the one with the highest area un-
der the ROC curve – this area summarizes the performance of the
classifier across the threshold range.

Emmanouilidis [5] recently suggested integrating sensitivity and
specificity as objectives in multiobjective optimisation, using a fixed
threshold. In this paper we introduce an alternative approach, treating
a model as dominating another only if it does so along the entire
ROC curve. We define the concept ofROC dominationas follows.
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Figure 2. Receiver Operating Characteristic (ROC) Curve

Let Sθ(A) andQθ(A) be the sensitivity and specificity respectively
of modelA at decision thresholdθ. Then we defineA ÂR B as
follows:

LetQ(s, A) = max
θ
{Qθ(A) | Sθ(A) ≥ s} (8)

A ÂR B ⇐⇒
� ∀s,Q(s, A) ≥ Q(s, B)
∃s,Q(s, A) > Q(s, B)

, (9)

– the specificity ofA is at least that ofB at all sensitivity levels, and
is strictly greater in at least one place. This ROC dominance concept
may be used in any multiobjective optimization procedure concerned
with classifier performance.

ROC dominance may be determined algorithmically as follows.
For each classifier, construct adecision table, Di, which has a row for
each training case, and columns for the model’s confidence estimates,
yi and the corresponding observed class,ti. Sort the table in descend-
ing order of confidence. Next, constructlook-up tables, Si, that give
the best True Negative (TN) rate achievable at each True Positive
(TP) rate (these figures are proportional to specificity and sensitiv-
ity respectively). To construct this table, initialise TN=N , whereN
is the number of negative cases in the training set, and TP=0. This
corresponds to the decision taken ifθ > maxi{yi}. As θ is lowered,
cases are transferred out of the TN count, if the case is actually a neg-
ative, or into the TP count, if the case is actually a positive. Several
TN values may be encountered for a given TP – the first found is the
best achievable. Once the TN look-up tables are available, checking
for ROC dominance follows trivially from equation 9.

sort( D1, 1 ); % sort by confidence level
tn := no_negatives;
i := 0;
for j = 1 to N

if D1(j,2) = 1 % -ve case
tn := tn-1;

else % +ve case
i := i+1;
S(i) := tn;

end
end

In practice, two similar classifiers may have marginally overlapping
ROC curves, in which case we may wish to allow one to dominate the
other if it is better in other objectives. We therefore modify the ROC
dominance condition so that classifiers are considered ROC equal if
the overlap is below a threshold proportion (we use 0.05). ROC dom-
inance may be combined with other objectives in a multi-objective
setting. We use the tree size (number of nodes) as a single, simple

measure of complexity, as this is related to polynomial complexity,
and acts to prevent bloating[3]. Arguably direct measures of polyno-
mial complexity could also be included, but our main interest in this
paper is the effect of ROC dominance, not complexity control.

4 MUTIOBJECTIVE GENETIC
PROGRAMMING

Recently, Emmanouilidis [6] [7] has extensively investigated the use
of Multiobjective Genetic Algorithms to select for both performance
and model complexity objectives, in the context of feature selection
for non-linear models, including neural networks and fuzzy logic
systems. His work is based mainly on the use of the niched Pareto
GA [9]. Polynomial inference is closely related to feature selection (it
can be posed as such if we introduce all interaction terms up to some
order as new variables, although in practice the number of variables
rapidly spirals out of control). There has also been recent interest
in using MOGAs to control bloat in Genetic Programming [3] [4].
Rodŕıguez-V́azquez [12] used the MOGA designed by Fonseca and
Fleming [8] to optimise a number of performance and complexity
measures in GP, and also demonstrated the division of effort between
GP structure design and coefficient optimisation by least squares in
the context of polynomial modelling. In this paper we consider the
use of the niched Pareto GA in Genetic Programming.

The niched Pareto GA [9] maintains a population, and a separate
non-dominated set, which contains copies of all solutions found on
the Pareto front (if this set reaches a maximum size, it is pruned by
niching). Selection is implemented by generating a separatemating
set; once generated, the mating set is subjected to crossover, mutation
or cloning to generate the new population, and the non-dominated set
is updated. A specialised form of tournament selection is used. The
tournament members are selected from the union of the population
and the non-dominated set, introducing an elitist element to the al-
gorithm. Rather than competing with each other they are compared
with a largerdominance setrandomly selected from the current pop-
ulation. If there exists a single tournament member non-dominated
by all members of the dominance set, it is copied to the mating pool.
If two or more tournaments members are non-dominated, or if all
are dominated, anichingstrategy is used to decide which should be
placed in the mating pool. Each is compared against existing mem-
bers of the mating pool, and the one with the bestniche score,Ni,
is chosen. The niche score reflects similarity to the existing members
of the mating pool, and may be phenotypic or genotypic.

4.1 Unbiased initialisation

To apply the niched Pareto GA to Genetic Programming, a number
of adjustments need to be made. Emmanouilidis [6] demonstrated the
importance of establishing and maintaining a population that samples
the Pareto front widely, and defined special initialisation and muta-
tion operators to achieve this in the context of feature selection.

In GA feature selection, standard crossover tends to average the
number of features selected between parents, necessitating a special-
ized crossover operator. However, in GP crossover does not have this
effect – complexity levels may converge or diverge, but tend to stay
approximately the same.

In contrast to mutation, standard GP initialisation (where the S-
expression is formed by randomly assigning either a terminal or oper-
ator with a fixed probability, and recursively continuing until a maxi-
mum depth is reached or all terminals have been generated) is biased,



with different probability levels for different sizes of tree. We define
a uniform size initialisation algorithm as follows:

1. Choose the number of terminals,T , using a uniform random se-
lection in the range [1−M ];

2. Create a tree consisting a single terminal;
3. Iterate until the tree hasT or more terminals:

(a) Select an existing terminal by uniform random selection.

(b) Convert it into a randomly-selected operator, and add operand
terminals.

The algorithm may generate slightly more thanT terminals if the last
operator injected has too many operands, but is unbiased.

4.2 K Nearest Neighbor Niching

To perform niching, we require a distance metric between models.
We define the distance between two polynomials,pi andpj , as the
sum of the orders of the distinct terms (coefficients are ignored):

D(pi, pj) = C(pi − pj), where C(p) =
X

i

X
j

ti,j . (10)

Rather than calculating a niche count as recommended in Horn [9],
we use a K-nearest neighbor algorithm, setting the niche score to the
mean of the distance to theK nearest members of the mating pool
(the neighborhood,K) – see equation 11. This has the benefit that we
do not need to set an arbitrary niche radius. The tournament member
with the best score is selected. Ties are broken arbitrarily.

Ni =

P
KD(pi, pk)

K
. (11)

5 EMPIRICAL STUDY

There are some difficulties in empirically evaluating the proposed
algorithm. First, we are not aware of any comparable algorithm that
attempts to induce a ROC-diverse set of models. A comparative study
is therefore not possible. Instead, we present some qualitative results
regarding the diversity of the induced solutions, and briefly analyze
the consistency of the algorithm in sampling the Pareto front.

We also compare the classifiers’ performance with two alternative
approaches: a logistic regression model, which is equivalent to a first
order logistic polynomial and therefore acts as a “vanilla” baseline;
and an RBF neural network, a non-linear model which performs well
on this data set. In both cases, the comparison is again qualitative as
we are interested in relative performance across the ROC curve.

We have experimented with a number of data sets, but for
the sake of brevity here we present results on only one – the
standard Ionosphere data set (additional results are presented at
http://www.durham.ac.uk/andrew1.hunter/LogPoly/). The iono-
sphere data set has a strongly non-linear relationship between vari-
ables. For computational tractability (and bearing in mind the need
for repeated experiments) we experiment with just the first 10 input
variables. The data was randomly shuffled, with 200 cases assigned
to training and 151 to test. Again, for reasons of computational com-
plexity we did not attempt a more sophisticated evaluation utilizing
resampling (which affects the accuracy of the performance estimates
rather than the behavior of the induction algorithm). All runs use the
parameters shown in table 1.

Table 1. GA Settings

Population 100
Non-dominated set size 25
Tournament size 2
Dominance group size 10
Generations 100
Crossover rate 0.3
Mutation rate 0.3

5.1 Performance

In this section we compare the performance of the logistic polyno-
mial classifiers with a standard baseline technique, logistic regres-
sion, and a Radial Basis Function neural network. The former is
equivalent to a logistic polynomial that contains all variables as first-
order terms, and no quadratic or higher order terms, and is a standard
statistical technique in widespread use. The RBF network is a rela-
tively sophisticated non-linear method with good performance. We
would not expect any technique to perform significantly better, and
so it acts as an informal “gold standard” for our algorithm.

A typical run generated a full complement of 25 non-dominated
solutions (the maximum we permitted in the non-dominated set),
with tree sizes varying from 1–35 nodes, number of terms from 2–
38, order from first to fifth. Figure 3 shows the ROC curves for the
two benchmark algorithms and three of the best logistic polynomial
classifiers found.

The first classifier shown is an 18 term cubic that uses six of the
variables. Performance is slightly inferior to that of the neural net-
work. However, the fact that standard statistical approaches (as used
for logistic regression) to validate models may be used, and that some
users such as clinicians demand an explicit model, makes it a very
useful alternative.

Illustrated on the same graph is a 13 term quadratic that also uses 6
variables – the relative simplicity comes at the cost of some decrease
in performance.

The third classifer shown is a three term quadratic, that uses only
three variables (p(x) = 2.97x1x7 − 3.48x2

4 − 0.21). This is a sub-
stantially more compact classifier than logistic regression, with ex-
cellent comparative performance.
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Figure 3. ROC Comparison against benchmark models.



5.2 Consistency

To characterize consistency, we conducted ten runs of the algo-
rithm, and computed the full non-dominated front across all clas-
sifiers tested. For this comparison we use the strict definition of non-
dominance, where any overlap in the ROC curves implies mutual
non-domination. There were a total of 51 such non-dominated clas-
sifiers, over 14 distinct complexity levels, reflecting the fact that clas-
sifiers with marginally overlapping ROC curves are not uncommon.

Rather than testing individual runs to see if they locate all the over-
lapping non-dominated solutions at each complexity level, we check
whether a run has found at least one non-dominated solution at each
complexity level (a run may find several overlapping solutions per
complexity level). Figure 4 shows the proportion of runs that discover
a non-dominated solution against complexity level (only odd-valued
complexity levels are available, as binary trees have an odd number
of nodes). The consistency drops quite rapidly, indicating that the al-
gorithm has trouble sampling the admittedly large Pareto front for
the more complex models (there are265 quadratics alone).
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Figure 5 shows the generation on which the algorithms first dis-
covered a member of the overall non-dominated set. The approxi-
mately linear relationship implies that running the algorithm for a
longer period might well yield better, and more consistent, results.
The computational costs of the algorithm make this difficult to jus-
tify – the algorithm took approximately 24 hours on a P800 per run.
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Figure 5. Discovery of new non-dominated solutions

6 CONCLUSION

We have described an approach to use logistic polynomial models in
conjunction with Multiobjective Genetic Programming to infer non-
linear classifiers from data. We have shown how to optimise the coef-
ficients of these models in the maximum likelihood paradigm using
Quasi-Newton. We have introduced the concept of ROC dominance,
and shown how it can contribute to the exploratory capabilities of
multiobjective algorithms with classifier performance as one general
objective. We have also introduced the use of a uniform complex-
ity initialisation operator for Genetic Programming, and the use of K
nearest neighbour in niche scoring.

We have demonstrated that this technique may be used to infer
parsimonious and comprehensible non-linear classifiers, and that a
diverse range of such models (trading off parsimony versus perfor-
mance) may be generated. Performance is inferior to a neural net-
work on the data set we used, but better than logistic regression while
maintaining the relatively high analytic tractability of the latter.
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