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Abstract:  The cognitive architecture MicroPsi builds on a framework for 
simulating agents as neuro-symbolic spreading activation networks. These 
agents are situated in a simulation environment or fitted with robotic bodies. 
The current implementation of MicroPsi has been re-implemented from the 
ground up and is described here. 

1 Introduction   

MicroPsi (Bach 2003) is a cognitive architecture with a focus on grounded repre-
sentations, cognitive modulation and motivation. MicroPsi agents are autonomous 
systems that combine associative learning, reinforcement learning and planning to 
acquire knowledge about their environment and navigate it in the pursuit of resources. 
MicroPsi is also being used to model the emergence of affects and higher level emo-
tions (Bach 2012a), and to model human performance and personality properties in 
the context of problem solving (Bach 2012b). The architecture extends concepts of 
Dietrich Dörner’s Psi theory, and is thus rooted in a psychological theory of motiva-
tion and complex problem solving (Dörner 1999, Dörner et al. 2002). The principles 
and concepts of MicroPsi are described in detail in the book ÒPrinciples of Synthetic 
IntelligenceÓ (Bach 2009) and subsequent publications (Bach 2011) and are not dis-
cussed here. Instead, we will focus on the MicroPsi framework, i.e., the simulation 
and design framework that allows the construction and execution of our family of 
cognitive models.  

Unlike many other cognitive architecture frameworks that define agents in the 
form of code (either in a domain specific language, as a set of rules and representa-
tional items), MicroPsi uses graphical definitions for its agents, and a graphical editor 
as the primary interface. In this respect, it is for instance similar to COGENT (Cooper 
and Fox 1998). While rule-based representations and (hyper-)graphical representa-
tions are computationally equivalent, the graphical paradigm highlights weighted 
associations, allows to visualize conceptual hierarchies, activation spreading, percep-
tual schemata and parallelism.  



The first implementation of the MicroPsi framework spanned the years 2003 to 
2009, and was built in Java as a set of plugins for the Eclipse IDE. The graphical edi-
tor was built on SWT. It comprised about 60000 lines of code, and although a lot of 
effort went towards platform independence (with the exception of a DirectX/.Net 
based 3D viewer component), deployment on the various operating systems and 
across several versions of Eclipse became support intensive, especially after its adop-
tion by teams outside of our group.  

Gradual changes in the formalization of MicroPsi and the emergence of new soft-
ware development methodologies and tool chains, especially the move from Java 
design patterns and XML tools towards lightweight and agile Python code, prompted 
a complete rewrite of the MicroPsi framework, starting in 2011. The following sec-
tion describes the overall structure of the framework, followed by detailed definitions 
of the node net formalism and the structure of simulation worlds that enable running 
MicroPsi agents. 

 

 
Figure 1: MicroPsi User Interface, Node Net View 

2 The MicroPsi 2 Framework 

MicroPsi 2 is being written in Python, with a minimum of external dependencies, 
to make installation as simple as possible. Instead of a standard GUI, we decided to 
render the user interface in a web browser, and to deploy the MicroPsi agent simula-
tion as a web application (figure 1). The MicroPsi server acts as a (local or remote) 
Web server that delivers UI components as HTML/Javascript, and facilitates the 



communication between the browser based renderer and the agent simulator via JSON 
and JSON remote procedure calls. Rendering is supported by Twitter’s widget library 
Bootstrap (2012) and the Javascript library PaperJS (Lehni and Puckey, 2011). 

This design choice makes it possible to remote control a MicroPsi simulation serv-
er from a different machine, and even to use the MicroPsi runtime without any local 
installation at all, as long as customization is not desired. 

 

 
Figure 2: Components of MicroPsi 2 Framework 

MicroPsi consists of a server (the web application), a runtime component, a set of 
node nets, a set of simulation worlds, a user manager and a configuration manager 
(figure 2). The server is built on the micro web framework Bottle (Hellkamp 2011) 
and communicates with all current users via their web browsers through the Server 
API. User sessions and access rights are handled by the user manager component. 

On startup, the server invokes the runtime component, which interfaces to the 
server with the MicroPsi API. The runtime is designed to work independently of the 
server and does not need to be deployed as a web application (command line interac-
tion or OS based user interfaces are possible as well). 

The runtime supplies a manager for MicroPsi node nets (see section 4), and a 
manager for simulation worlds (or interfaces to outside environments, such as robotic 
bodies, remote data providers, etc.). Standard simulation worlds (section 6) provide 
agents (node net embodiments) and objects as situated state machines.  



3 MicroPsi Agents 

MicroPsi interprets cognitive models as agents, situated in dynamic environments. 
MicroPsi agents are entirely defined as hierarchical spreading activation networks 
(SAN), which—for lack of a better name—are called node nets. Node nets are the 
brains of these agents—or rather, an abstraction of the information processing provid-
ed by brains, and the environment provides a body and stuff to interact with.  

The body manifests itself as a set of data sources (which can be thought of as the 
terminals of sensory neurons) and data targets (the abstracted equivalent of motor 
neurons). By reading activation values from data sources, and sending activation into 
data targets, the MicroPsi agent may control its body and interact with its world. 

MicroPsi’s node nets can be interpreted as neural networks and afford neural learn-
ing paradigms. For the purposes of information storage and retrieval, they can be seen 
as semantic networks with a small set of typed links to express associative, partonom-
ic, taxonomic and causal relationships. 

Since the nodes can also encapsulate state machines and arbitrary operations over 
the node net, they can also be understood as components of a concurrent, modularized 
architecture, with activation spreading as the primary means of communication be-
tween the modules. 

4 Definition of Node Nets 

This section gives an overview over the definition of MicroPsi node nets. 
 
𝑁𝑜𝑑𝑒𝑁𝑒𝑡 ≡
𝑆𝑡𝑎𝑡𝑒𝑠: 𝑠 , 𝑠!, f!"#,𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠: 𝑛𝑡 ,𝐷𝑎𝑡𝑎𝑆𝑜𝑢𝑟𝑐𝑒𝑠: 𝑑𝑠 ,𝐷𝑎𝑡𝑎𝑇𝑎𝑟𝑔𝑒𝑡𝑠: 𝑑𝑡  
 
A node net is characterized by a set of states, a starting state 𝑠!, a network function 

f!"#: 𝑠!×𝐷𝑎𝑡𝑎𝑆𝑜𝑢𝑟𝑐𝑒𝑠 → !!!!×𝐷𝑎𝑡𝑎𝑇𝑎𝑟𝑔𝑒𝑡𝑠 that determines how to advance to the 
next state, and set of node types. Data sources and data targets provide a connection to 
the environment; a data source represents a value that is determined by an environ-
mental state, while the values of data targets can be changed to effect something in 
the environment. 

 
! ! 𝑁𝑜𝑑𝑒𝑠: ! ! !"#$%! ! ! !"#$%&'($) ! !" ! !  

 
The state of a node net is given by a set of nodes, or units, a set of directed links, a 

set of node spaces and the current simulation step ! . Each node is part of exactly one 
node space. The primary role of node spaces is to provide some additional structure to 
node nets, similar to folders in a file system.  

Node spaces form a tree—thus, each node space, with the exception of the root 
node space, has exactly one parent node space. 

 



𝑛𝑠 ≡

𝑝𝑎𝑟𝑒𝑛𝑡 ∈ 𝑁𝑜𝑑𝑒𝑆𝑝𝑎𝑐𝑒𝑠 ∪ ! !
!"#$%&'( 𝑠: !" ! !"#$%&'$( : !" !

!"#$%&#'()! !"# ! !""#$%&'#(" ! !""#$ !
!"#$%!! !"#$%

 

 

Node spaces do not only provide some additional structure to node nets, they may 
also limit the spreading of activation via node space specific 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟𝑠, control how 
connections between nodes are strengthened based on 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑜𝑟𝑠, or how they are 
weakened over time using a 𝑑𝑒𝑐𝑎𝑦 parameter. (More on these things below.) 

 
! ! !" ! !"#$%&! !"# !"#$%!&!!" ! !"#"$% ! ! !"#$%!!"#$% 

 
Each node is characterized by its identifier !" , its type !" , an optional set of pa-

rameters !"#"$% !  (which can make the node stateful), a set of gates and a set of 
slots. Gates are outlets for activation, while slots are inlets.  

 
!" ! !"#$%&'$( ! !" ! !"#$%&'() ! !" ! ! !  

 
The types of slots and gates of a node are defined within the node type, next to ad-

ditional functionality ! !  performed by the node whenever it becomes active. In most 
cases, ! !  is limited to transmitting activation within the node, from the standard slot 
‘gen’ to the gates. 

 
f!"#$%&'! ! !"#!!"#$ !!"#$ ! !"#$%! ! ! !"#$ ! ! !"#$ !!"# !

 

 
Nodes can store additional parameters and change them in the course of the node 

function, which makes them state machines: 
 

! ! ! ! !"#$%! !! ! !"#"$% ! !! ! ! !"#$%! !! ! ! ! !"#"$% ! !! ! !
 

 
More generally, some nodes may contain arbitrary functions, such as the creation 

of new nodes and links, procedures for neural learning, planning modules etc. These 
functions take the form of a program in a native programming language (here, Py-
thon), and hence, such nodes are also called native modules. 

 
!! !"#$%

! ! !"#$% ! ! 𝐿𝑖𝑛𝑘𝑠!! !"#$%&'($) ! ! !"#$% ! ! ! ! !"#$%! ! ! ! !"#$%&'($) ! ! !
 

 
The nodes form a directed graph, with links connecting their gates to slots.  
 

!! ≡ 𝑔𝑎𝑡𝑒 ! !"#$%!"#$#%! !"#$% !!" !" ∈ !"#$%!"#$%! ! !"#$% !𝜔, 𝑐  

 
A link is characterized by the gate of origin, the slot of the target node, a weight !  

and a confidence parameter ! . Usually, ! ! ! ! ! !  and ! ≤ 𝑐 ≤ ! . 
 

!"#$ ! !" !𝛼! !"# ! !"#"$% !"#$ ! !"# ! ! !" ! ! !"#  



 
A gate is determined by its gate type !" , an activation ! , an output activation!!"#  

(which is transmitted via the links originating at that gate), a minium and a maximum 
value, and the output function ! !"# .  

!" ! !" ! ! !"#$ ! !"  

 

! !"#$ ! ! !"#$ ! !"#"$% !"#$ ! ! !"#$
!  

f !"# ! ! !"#$
! ! ! !"# !!" !"#$ !!" ! !!"#$ !! ! !"# !"#$

 

 
Together with the gate function ! !"#$ , which is supplied by the type !"  of the gate, 

the output function specifies how to calculate the output activation.  
 

!!"#$%&'
!"#$ !

! !"#$ ! !"!! !"#$ ! ! !"#$

! ! !"#! !
 

 
The default gate function assumes a threshold parameter !  and sets the activation 

to zero, if it is below this threshold. This turns the node into a simple threshold ele-
ment. The reason that the gate calculations are split in two separate functions is cus-
tomization: gate functions may be sigmoidal, to enable back-propagation learning, or 
bell-shaped, to build radial basis function networks, etc.  

 

! !"# ! ! !"#$ !"# !" !"#$ !!" ! !!"#$ !"# !"#$

!"# !"#$  

 

After the application of the gate function, the output function may control the 
spread of activation through a gate by multiplying the gate’s activation with the value 
of the activator !"#  that corresponds to the type of the gate (and is defined and adjust-
ed on the level of the node space that contains the node). 

 
Next to gates, nodes feature slots. 
 

!"#$ ! !" ! !  

!" ! !" ! ! !"#$! !"  

 
Slots are characterized by their type!!"  and their activation ! .While nodes may 

have multiple slots to receive activation, most offer just one (of type ‘gen’). The acti-
vation of a slot is determined by the slot function ! !"#$ , which sums up the incoming 
activation.  

 
! !"#$ ! ! ! ! ! ! !"#$%!"#$

! !"# !"#$ !"#$% !!"#$
! ! !"#$

 

!!"#$%&'
!"#$ ! ! ! !"# !"#$ !

! ! !"#$%!"#$

 

 



Again, alternate slot functions can be defined (for instance, a squared average or a 
maximum function), and are stored or changed on the level of the node space that 
contains the respective node.  

The slot functions provide the transmission of activation between nodes, along 
links. The changes in strength of these links are influenced by the associator functions 
and decay functions, which act on the weights of all links originating in a given node 
space. 

 

! !""#$ ! !
!"#$ ! !

! !!"#$ ! !
! ,! ! !

! !
!"#$ ! !

! !!"#$ ! !
!

!!
! !""#$ !" ! !

! !"#$ ! !
! !

!"#$ ! !
!

!

 

  
The association between two nodes is strengthened based on the activation of the 

respective slots and gates the link connects, and the activity of the association factor 
!""#$  of the respective node space.  

 
! !"#$% !  

!
!"#$ ! !

! !!"#$ ! !
!

!! ! !
!

!"# ! ! !
!"#$ ! !

! !!"# !!!
! ,!

! ! !"#$%!" ! !

!
!"#$ ! !

! !!"#$ ! !
! !!

! !"#!

! !"!! ! ! !"! !

!"#$%  

 
If the decay factor of the respective node space has a value between 0 and 1, and 

the weight of the link is below the decay threshold ! !"#$% , the link is weakened in 
every simulation step. This provides a way of ‘forgetting’ unused connections. The 
decay threshold ensures that very strong connections are never forgotten. 

 
In each simulation step, the network function ! !"#  successively calls all slot func-

tions ! !"#$ , the node functions ! !  and gate functions ! !"#$ ; ! !"#  of all active nodes, and 
the associator functions ! !""#$  and decay functions ! !"#$%  for all links. 

5 Basic Node Types 

The most primitive node type is a Register. It provides a single slot and a single 
gate of type gen and acts as a threshold element. 

 
!"#$%&"' ≡ !"#$%&'$( ! !"# ! !"#$%&'() ! !"# ! ! ! ! !!"#$%&'

!  

 
The basic conceptual element, analogous to Dietrich Dörner’s Psi theory, is the 

Quad. It makes use of a single ‘gen’ slot and the four directional gates ‘por’, ‘ret’, 
‘sub’, ‘sur’. ‘Por’ encodes succession, ‘ret’ predecession, ‘sub’ a part-of relationship, 
and ‘sur’ stands for has-part. With the ‘gen’ gate, associative relationships can be 
expressed. 

 



!"#$ !
!"#$%&'$( ! !"# ! !"# ! !"#! !"# ! !"# !

!"#$%&'!" ! !"# ! ! ! ! !!"#$%&'
!

 

 
Concept nodes extend quads by the gates ‘cat’ (for is-a relations), and ‘exp’ (for 

their inverse), as well as ‘sym’ and its inverse ‘ref’ for symbolic labeling. Concept 
nodes may be used to express taxonomies. 

 

!"#$%&' !
!"#$%&'$( ! !"# ! !"# ! !"#! !"# ! !"# ! !"#! !"# ! !"# ! !"# !

!"#$%&'() ! !"# ! ! ! ! !!"#$%&'
!

 

 
The connection to the environment is provided by sensor nodes, which have no 

slots and only a single gate, which receives its activation from the associated data 
source. The sensor type is given as a node parameter. 

 
!"#$%&! !"#$%&'$( ! !"# ! !"#$%&'() ! ! ! ! !"#$ ! ! !"#$   !"# ! !" !"#!$%&'("

 

 
Likewise, actor nodes influence the environment by writing the activation received 

through their single ‘gen’ slot into a data target. The actor type is given as a node 
parameter. 

 

!"#$% ! !"#$%&'$( ! ! ! !"#$%&'() ! !"# ! ! !"#$ ! !" !"#$%&'() ! ! !"#$ !!"#
 

 
Activator nodes are special actors. Instead of a data source, they target the activator 

!"#  corresponding to the activator type !"#$%&'  (given as a node parameter) of their 
node space. Thus, activator nodes may be used to restrict the spreading of activation 
to certain link types.  

 

!"#$%&#'( !
!"#$%&'$( ! ! ! !"#$%&'() ! !"# !
! ! : ! !"# !"#$%&' !!" !"#$%!#&'

! ! !"#$ !!"#

 

 
Associator nodes work just like activators, but target the association factor !"" !"  

of their node space.  
 

!""#$%&'#( !
!"#$%&'$( ! ! ! !"#$%&'() ! !"# !

! ! ! ! !""#$ !""#$%&'( !!" !""#$%!&#'
= ! !"#$ !!"#

 

6 Environment 

Within the MicroPsi framework, agents may be embedded into an environment 
(!"#$%). The environment must provide a world adapter !"  for each MicroPsi agent. 
The world adapter offers data sources, from which the agent’s node net may read 
environmental information, and data targets, which allow the agent to effect changes 
in the world. Since the environment only has write access to data sources, and read 
access to data targets, node net and environment may be updated asynchronously. 



The world adapter may interface a local multi-agent simulation, a robotic body, a 
computer game client or simulation server, dynamically updated stock data, etc. Here, 
we give a simple simulation world as an example. 

 
!"#$% ! !"#"$%! !" , !" ! !𝑡𝑒𝑟𝑟𝑎𝑖𝑛! !"#$%&%'()*#+ ! !" ! ! !"#$%  

 
𝑤𝑎 ≡ !"# !"#$%&'( ! 𝑑𝑠 ,𝐷𝑎𝑡𝑎𝑇𝑎𝑟𝑔𝑒𝑡𝑠: 𝑑𝑡  

 
The simulation is determined by its state, a set of fixed properties (𝑡𝑒𝑟𝑟𝑎𝑖𝑛), a set 

of world adapters (which provide connections to agents and additional environments) 
and a function ! !"#$ ! ! !" ! ! !"##$%&! !"#"$"%&'#( ! !" ! ! ! ! !"#"$%&'()*  
that determines how to advance to the next state. 

 
!" ! !"#$%&'! !"# ! ! !

 

 
The state of the world consists of a set of objects and the time step of the simula-

tion. 
 

!"# ! !"# ! !"#$%&'&(&$)! !" ! ! !"#  

 
Objects have a position !"#  (for instance ! ! ! ), a set of object states !"  and an 

object function, ! !"#  that determines how the position and states of the object change 
from one state to the next, based on the previous state, the states and positions of oth-
er objects and the terrain. 
 

𝐴𝑔𝑒𝑛𝑡𝑠: !"#$% ! !"#$%&'! 

!!"#$%
!"# ! !"# !"#$% !! ! !"#$%&'&(&$)!"#$% !! ! !"#"$"%&' !" !" !!"#$% !  

𝑂𝑏𝑗𝑒𝑐𝑡𝑠!! !"##$%&! !"# !"#$% !! ! ! !"#$%&'&(&$)!"#$% !! ! ! ! !"#"$%&'()* !" !!"#$%
 

 
Agents are objects in the world like any other, but each agent object corresponds to 

a world adapter, which links it to a node net. Think of the agent object as the body of 
the MicroPsi agent, and the object states as its physiological states. The object func-
tion of the agent !!"#$%

!"#  advances these physiological states, the position of the agent 
and the inputs to the node net. 

In each simulation step, the world function calls all object functions, and takes care 
of the creation of new objects and the removal of obsolete ones. 

7 Applications 

Compared with the original implementation of MicroPsi, the current iteration of 
the framework is still fragmentary; at the time of writing, it supports only a simple 
generic simulation world for multi agent experiments (instead of the various simula-
tion environments provided in MicroPsi 1). Also, 3D viewing components for envi-
ronments and facial expressions are completely absent. 



The current priority of MicroPsi 2 lies on affective simulation for problem solving 
experiments (see Bach 2012b), and its application as a general framework for 
knowledge representation in a hierarchical semantic network. 
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