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A logic for polynomial time

Atserias, Bulatov, Dawar Slv(G) /∈ FP+C

Dawar, Grohe, Holm, Laubner FP+C ≨ FP+rk ≤ PTIME

Matrix rank and linear equation systems

Fields A ⋅ x = b solvable iU rk(A) = rk(A∣b):
If r = rk(A), then a1 ⋅ c1 +⋯ + ar ⋅ cr + a ⋅ b = 0

Rings Many notions (linear dependence, McCoy, inner rank, ...),
unknown complexity, above characterisation fails

Groups UndeVned

Question: Is Slv(G) ∈ FP+rk?
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A systematic study of solvability

Inter-deVnability: ↝ natural domain for Slv

Theorem
k-ideal rings

FP-red.Ô⇒ cyclic groups of prime power order.

Intra-deVnability: ↝ FO extended by SlvF

Theorem
Normal form for FO+slvF.
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Inter-deVnability: a natural class for solvability

Slv(CG): Cyclic groups (Zpe )
Slv(IkR): k-gen. ideal rings (I◁ R⇒ I = π1R +⋯ + πkR)
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Intra-deVnability: solvability as a logical operator

slv(x̄, ȳ, r̄i).[ϕM(x̄, ȳ, r̄),ϕb(x̄, r̄), (ϕR,ϕ+,ϕ⋅)(r̄1, r̄2, r̄3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

]

Vnite ringcoeXcient matrix solution vector

⇒

FO+slv ∶ First-order logic closed under solvability quantiVer

FO+slvF ∶ Solvability quantiVer over a Vxed Vnite Veld F
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Intra-deVnability: solvability as a logical operator

Theorem
Every FO+slvF-formula is equivalent to a formula of the form

slv(x̄, ȳ).[ϕM(x̄, ȳ),1], with ϕM quantiVer-free.

Proof illustration: (negation)

¬slv(x̄, ȳ).[ϕ,1]

Non-solvability ≡ ¬∃x ∶Mx = b
?≡ ∃y ∶M′y = b′ ≡ Solvability

Gaussian elimination implies:

¬∃x ∶Mx = b ≡ ∃y ∶ y(M∣b) = (0, . . . , 0∣1).

Proof illustration: (conjunction)

slv(x̄, ȳ).[ϕ,1] ∧ slv(x̄, ȳ).[ψ,1]

⋅vy =
1
⋮
1

ϕ

⋅vy =
1
⋮
1

ψ

↝ ⋅vyy =

1

⋮

1

ϕ 0

ψ0

Proof illustration: (universal quantiVcation)

∀z (slv(x̄, ȳ).[ϕ(x̄, ȳ, z),1])

⋅vy =
1
⋮
1

ϕ(z1)

⋅vy =
1
⋮
1

ϕ(zn)

⋮

↝ ⋅vyy =

1

⋮

1

ϕ(z1) 0

ϕ(zn)0

⋱

Proof illustration: (nesting of solvability)

slv(r̄, s̄).[slv(x̄, ȳ).[ϕ(r̄, s̄, x̄, ȳ),1],1]

⋅vs̄ =
1

⋮

1

x̄

ȳ

ϕ(r̄, s̄, x̄, ȳ)⋅vs̄ =
1

⋮

1

r̄

s̄

a[r̄, s̄]

Outer system: S Inner system: I[r̄, s̄]
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For r̄: ∑s̄ a[r̄, s̄] ⋅ vs̄
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 1

↝

For r̄: ∑s̄ 1 ⋅ v[r̄, s̄] = 1

Consistency conditions:

v[r̄, s̄] = 1 ⇒ a[r̄, s̄] = 1

v[r̄, s̄] /= v[r̄′, s̄] ⇒ a[r̄, s̄] /= a[r̄′, s̄]

↝

c
c
c
c
c
c
c
c
c
c
c
c

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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How to formalise: “If v = 1 then A ⋅ x = 1 solvable”

⋅x =
1

⋮

1

A

−v + 1
⋮

−v + 1
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ȳ

ϕ(r̄, s̄, x̄, ȳ)⋅vs̄ =
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Non-solvability ≡ ¬∃x ∶Mx = b
?≡ ∃y ∶M′y = b′ ≡ Solvability
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¬∃x ∶Mx = b ≡ ∃y ∶ y(M∣b) = (0, . . . , 0∣1).
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∀z (slv(x̄, ȳ).[ϕ(x̄, ȳ, z),1])

⋅vy =
1
⋮
1

ϕ(z1)

⋅vy =
1
⋮
1

ϕ(zn)

⋮

↝ ⋅vyy =

1

⋮

1

ϕ(z1) 0

ϕ(zn)0

⋱

Proof illustration: (nesting of solvability)

slv(r̄, s̄).[slv(x̄, ȳ).[ϕ(r̄, s̄, x̄, ȳ),1],1]
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Outlook: from solvability to group membership

Theorem Slv(D) GM (π ∈ ⟨π1, . . . , πk⟩ ≤ SΩ?)
FO

rk(F) #GM(Compute: ∣⟨π1, . . . , πk⟩∣)

⋅ =

⋮

br̄

⋮

⋮

xs̄

⋮

r̄ ∈ I

s̄ ∈ J

cs̄ ∶=
linear system is solvable

⇐⇒

b ∈ ⟨cs̄ ⋅ d ∶ d ∈D, s̄⟩ ≤ (D,+)I

Cayley’s theorem: FO-deVnable embedding ι ∶ (D,+) → SD
↝ FO-deVnable embedding ι ∶ (D,+)I → SI×D
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