Definability of linear equation systems over groups and rings

A. Dawar, E. Grädel, B. Holm, E. Kopczynski, W. Pakusa

University of Cambridge, University of Warsaw, RWTH Aachen University

Barriers II, Cambridge, 29 March 2012

Atserias, Bulatov, Dawar $Slv(G) \notin FP+C$

Dawar, Grohe, Holm, Laubner $FP+C \leq FP+rk \leq PTIME$

Atserias, Bulatov, Dawar
$$Slv(G) \notin FP+C$$

Dawar, Grohe, Holm, Laubner
$$FP+C \leq FP+rk \leq PTIME$$

Matrix rank and linear equation systems

Fields
$$A \cdot x = b$$
 solvable iff $rk(A) = rk(A|b)$:
If $r = rk(A)$, then $a_1 \cdot c_1 + \cdots + a_r \cdot c_r + a \cdot b = 0$

Atserias, Bulatov, Dawar
$$Slv(G) \notin FP+C$$

Dawar, Grohe, Holm, Laubner
$$FP+C \leq FP+rk \leq PTIME$$

Matrix rank and linear equation systems

Fields
$$A \cdot x = b$$
 solvable iff $rk(A) = rk(A|b)$:

If
$$r = rk(A)$$
, then $a_1 \cdot c_1 + \cdots + a_r \cdot c_r + a \cdot b = 0$

Rings Many notions (linear dependence, McCoy, inner rank, ...), unknown complexity, above characterisation fails

Groups Undefined

Dawar, Grohe, Holm, Laubner
$$FP+C \leq FP+rk \leq PTIME$$

Matrix rank and linear equation systems

Fields
$$A \cdot x = b$$
 solvable iff $rk(A) = rk(A|b)$:

If
$$r = rk(A)$$
, then $a_1 \cdot c_1 + \cdots + a_r \cdot c_r + a \cdot b = 0$

Rings Many notions (linear dependence, McCoy, inner rank, ...), unknown complexity, above characterisation fails

Groups Undefined

Question: Is $Slv(G) \in FP+rk$?

Inter-definability: → natural domain for Slv

Inter-definability: → natural domain for Slv

Theorem

k-ideal rings $\stackrel{\text{FP-red.}}{\Longrightarrow}$ cyclic groups of prime power order.

Inter-definability: → natural domain for Slv

Theorem

k-ideal rings $\stackrel{\text{FP-red.}}{\Longrightarrow}$ cyclic groups of prime power order.

Intra-definability: \rightsquigarrow FO extended by Slv_F

Inter-definability: → natural domain for Slv

Theorem

k-ideal rings $\stackrel{\text{FP-red.}}{\Longrightarrow}$ cyclic groups of prime power order.

Intra-definability: → FO extended by Slv_F

Theorem

Normal form for FO+slv_F.

```
Slv(\mathbf{CG}): Cyclic groups (\mathbb{Z}_{p^e})
Slv(\mathbf{I}_k\mathbf{R}): k-gen. ideal rings (I \triangleleft R \Rightarrow I = \pi_1R + \dots + \pi_kR)
```

```
Slv(\mathbf{CG}): Cyclic groups (\mathbb{Z}_{p^e})
Slv(\mathbf{I}_k\mathbf{R}): k-gen. ideal rings (I \lhd R \Rightarrow I = \pi_1R + \dots + \pi_kR)
```



```
Slv(\mathbf{CG}): Cyclic groups (\mathbb{Z}_{p^e})
    Slv(\mathbf{I}_k\mathbf{R}): k-gen. ideal rings (I \triangleleft R \Rightarrow I = \pi_1R + \cdots + \pi_kR)
Slv(I_k \mathbf{R})
                                                              Slv(local-I_kR)
Slv(CG)
                                                                    Slv(\mathbf{R}_{<})
```

Slv(CG): Cyclic groups (
$$\mathbb{Z}_{p^e}$$
)
Slv($I_k \mathbf{R}$): k-gen. ideal rings ($I \triangleleft R \Rightarrow I = \pi_1 R + \dots + \pi_k R$)

Slv(CG): Cyclic groups (
$$\mathbb{Z}_{p^e}$$
)
Slv($I_k \mathbf{R}$): k-gen. ideal rings ($I \triangleleft R \Rightarrow I = \pi_1 R + \dots + \pi_k R$)

$$\begin{aligned} & \mathsf{Slv}(\mathbf{CG}) \colon \mathsf{Cyclic} \ \mathsf{groups} \ (\mathbb{Z}_{p^e}) \\ & \mathsf{Slv}(\mathbf{I}_k\mathbf{R}) \colon \ \mathsf{k}\text{-gen. ideal rings} \ (\mathbf{I} \lhd \mathbf{R} \Rightarrow \mathbf{I} = \pi_1\mathbf{R} + \dots + \pi_k\mathbf{R}) \end{aligned}$$

$$\mathsf{Slv}(\mathbf{I}_k\mathbf{R}) \xrightarrow{\qquad \qquad } \begin{split} & \mathsf{R} = \bigoplus_{e \in \phi} e \mathsf{R}, \ e \mathsf{R} \ \mathsf{local} \\ & \qquad \qquad \qquad \\ & \qquad$$

$$\begin{array}{l} \text{Slv}(\textbf{CG}) \colon \text{Cyclic groups} \; (\mathbb{Z}_{p^e}) \\ \text{Slv}(\textbf{I}_k \textbf{R}) \colon \text{ k-gen. ideal rings} \; (\textbf{I} \lhd \textbf{R} \Rightarrow \textbf{I} = \pi_1 \textbf{R} + \cdots + \pi_k \textbf{R}) \\ \\ \text{Slv}(\textbf{I}_k \textbf{R}) \xrightarrow{\qquad \qquad } \begin{array}{l} \textbf{R} = \bigoplus_{e \in \phi} e \textbf{R}, \, e \textbf{R} \, \text{local} \\ \\ & \qquad \qquad \\$$

$$\begin{array}{l} \text{Slv}(\textbf{CG}) \colon \text{Cyclic groups} \, (\mathbb{Z}_{p^e}) \\ \text{Slv}(\textbf{I}_k \textbf{R}) \colon \text{ k-gen. ideal rings} \, (\textbf{I} \lhd \textbf{R} \Rightarrow \textbf{I} = \pi_1 \textbf{R} + \cdots + \pi_k \textbf{R}) \\ \\ \text{Slv}(\textbf{I}_k \textbf{R}) & \xrightarrow{\textbf{R} = \bigoplus_{e \in \phi} e \textbf{R}, \, e \textbf{R} \, \text{local}} \\ \\ \downarrow & & \\ \text{Important } & \text{Slv}(\textbf{local-I}_k \textbf{R}) \\ \\ \downarrow & & \\ \text{Important } & \text{Importa$$

$$Slv(\mathbf{CG})$$
: Cyclic groups (\mathbb{Z}_{p^e})
 $Slv(\mathbf{I}_k\mathbf{R})$: k-gen. ideal rings $(I \lhd R \Rightarrow I = \pi_1R + \dots + \pi_kR)$

Theorem $Slv(I_k R) \leq_{FP}^T Slv(CG)$

$$slv(\bar{x},\bar{y},\bar{r}_{i}). \Big[\phi_{M}(\bar{x},\bar{y},\bar{r}),\phi_{b}(\bar{x},\bar{r}),\underbrace{(\phi_{R},\phi_{+},\phi_{\cdot})(\bar{r}_{1},\bar{r}_{2},\bar{r}_{3})}_{\text{coefficient matrix}}\Big]$$

$$slv(\bar{x},\bar{y},\bar{r}_{i}). \Big[\phi_{M}(\bar{x},\bar{y},\bar{r}),\phi_{b}(\bar{x},\bar{r}),\underbrace{(\phi_{R},\phi_{+},\phi_{\cdot})(\bar{r}_{1},\bar{r}_{2},\bar{r}_{3})}_{/}\Big]$$
 coefficient matrix solution vector finite ring

FO+slv: First-order logic closed under solvability quantifier FO+slv_F: Solvability quantifier over a fixed finite field F

Theorem

Every FO+slv_F-formula is equivalent to a formula of the form

$$slv(\bar{x},\bar{y}).\big[\phi_{\mathsf{M}}(\bar{x},\bar{y}),\boldsymbol{1}\big],$$
 with ϕ_{M} quantifier-free.

Theorem

Every $FO+slv_F$ -formula is equivalent to a formula of the form

$$slv(\bar{x},\bar{y}).\big[\phi_M(\bar{x},\bar{y}),\boldsymbol{1}\big],$$
 with ϕ_M quantifier-free.

Proof illustration: (negation)

$$\neg \mathsf{slv}(\bar{x},\bar{y}).\big[\phi,\boldsymbol{1}\big]$$

Non-solvability $\equiv \neg \exists \mathbf{x} : \mathbf{M}\mathbf{x} = \mathbf{b} \stackrel{?}{\equiv} \exists \mathbf{y} : \mathbf{M}'\mathbf{y} = \mathbf{b}' \equiv \text{Solvability}$

Theorem

Every $FO+slv_F$ -formula is equivalent to a formula of the form

$$\mathsf{slv}(\bar{x},\bar{y}).\big[\phi_{\mathsf{M}}(\bar{x},\bar{y}),\mathbf{1}\big], \text{ with } \phi_{\mathsf{M}} \text{ quantifier-free.}$$

Proof illustration: (negation)

$$\neg \mathsf{slv}(\bar{x},\bar{y}).\big[\phi,\boldsymbol{1}\big]$$

Non-solvability
$$\equiv \neg \exists \mathbf{x} : \mathbf{M}\mathbf{x} = \mathbf{b} \stackrel{?}{\equiv} \exists \mathbf{y} : \mathbf{M}'\mathbf{y} = \mathbf{b}' \equiv \text{Solvability}$$

Gaussian elimination implies:

$$\neg \exists \mathbf{x} : \mathbf{M}\mathbf{x} = \mathbf{b} \equiv \exists \mathbf{y} : \mathbf{y}(\mathbf{M}|\mathbf{b}) = (0, \dots, 0|1).$$

Theorem

Every $FO+slv_F$ -formula is equivalent to a formula of the form

$$slv(\bar{x},\bar{y}).\big[\phi_M(\bar{x},\bar{y}),\boldsymbol{1}\big], \text{ with } \phi_M \text{ quantifier-free.}$$

Proof illustration: (conjunction)

$$\mathsf{slv}(\bar{x},\bar{y}).\big[\phi,\boldsymbol{1}\big] \land \mathsf{slv}(\bar{x},\bar{y}).\big[\psi,\boldsymbol{1}\big]$$

$$\varphi$$
 $\mathbf{v}_{\mathbf{y}} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$

$$\psi \quad | \mathbf{v}_{\mathbf{y}} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Theorem

Every FO+slv_F-formula is equivalent to a formula of the form

$$slv(\bar{x},\bar{y}).[\phi_M(\bar{x},\bar{y}),1], \text{ with } \phi_M \text{ quantifier-free.}$$

Proof illustration: (conjunction)

$$\mathsf{slv}(\bar{x},\bar{y}).\big[\phi,\boldsymbol{1}\big] \land \mathsf{slv}(\bar{x},\bar{y}).\big[\psi,\boldsymbol{1}\big]$$

Theorem

Every FO+slv_F-formula is equivalent to a formula of the form

$$slv(\bar{x},\bar{y}).\big[\phi_{M}(\bar{x},\bar{y}),\boldsymbol{1}\big],\,$$
 with ϕ_{M} quantifier-free.

Proof illustration: (universal quantification)

$$\forall z (\operatorname{slv}(\bar{x}, \bar{y}).[\varphi(\bar{x}, \bar{y}, z), \mathbf{1}])$$

$$\varphi(z_1) \quad \cdot \mathbf{v_y} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$\varphi(z_n) \quad \mathbf{v_y} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Theorem

Every FO+slv_F-formula is equivalent to a formula of the form

$$slv(\bar{x},\bar{y}).[\phi_M(\bar{x},\bar{y}),1], \text{ with } \phi_M \text{ quantifier-free.}$$

Proof illustration: (universal quantification)

$$\forall z (\mathsf{slv}(\bar{x}, \bar{y}). [\varphi(\bar{x}, \bar{y}, z), \mathbf{1}])$$

$$\varphi(z_1) \quad \mathbf{v}_{\mathbf{y}} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$\vdots \quad \mathbf{v}_{\mathbf{y}} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$\varphi(z_n) \quad \mathbf{v}_{\mathbf{y}} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$\varphi(z_n) \quad \mathbf{v}_{\mathbf{y}} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Theorem

Every $FO+slv_F$ -formula is equivalent to a formula of the form

$$slv(\bar{x},\bar{y}).[\phi_M(\bar{x},\bar{y}),1], \text{ with } \phi_M \text{ quantifier-free.}$$

Proof illustration: (nesting of solvability)

$$\mathsf{slv}(\bar{r},\bar{s}).\big[\mathsf{slv}(\bar{x},\bar{y}).\big[\phi(\bar{r},\bar{s},\bar{x},\bar{y}),\boldsymbol{1}\big],\boldsymbol{1}\big]$$

Outer system: **S**

Inner system: $\mathbf{I}[\bar{r}, \bar{s}]$

Proof illustration: (nesting of solvability)

$$slv(\bar{r}, \bar{s}).[slv(\bar{x}, \bar{y}).[\phi(\bar{r}, \bar{s}, \bar{x}, \bar{y}), \mathbf{1}], \mathbf{1}]$$

Proof illustration: (nesting of solvability)

$$slv(\bar{r}, \bar{s}).[slv(\bar{x}, \bar{y}).[\phi(\bar{r}, \bar{s}, \bar{x}, \bar{y}), \mathbf{1}], \mathbf{1}]$$

For
$$\bar{r}$$
: $\sum_{\bar{s}} \underline{\alpha[\bar{r}, \bar{s}] \cdot \nu_{\bar{s}}} = 1$

Proof illustration: (nesting of solvability)

$$slv(\bar{r}, \bar{s}).[slv(\bar{x}, \bar{y}).[\phi(\bar{r}, \bar{s}, \bar{x}, \bar{y}), \mathbf{1}], \mathbf{1}]$$

For
$$\bar{r}$$
: $\sum_{\bar{s}} \underline{\alpha[\bar{r}, \bar{s}] \cdot \nu_{\bar{s}}} = 1$

For
$$\bar{r}$$
: $\sum_{\bar{s}} 1 \cdot v[\bar{r}, \bar{s}] = 1$

Proof illustration: (nesting of solvability)

$$\mathsf{slv}(\bar{r},\bar{s}).\big[\mathsf{slv}(\bar{x},\bar{y}).\big[\phi(\bar{r},\bar{s},\bar{x},\bar{y}),\boldsymbol{1}\big],\boldsymbol{1}\big]$$

For
$$\bar{r}$$
: $\sum_{\bar{s}} \underline{\alpha[\bar{r}, \bar{s}] \cdot \nu_{\bar{s}}} = 1$

For \bar{r} : $\sum_{\bar{s}} 1 \cdot \nu[\bar{r}, \bar{s}] = 1$

Consistency conditions:

$$\nu[\bar{r}, \bar{s}] = 1 \Rightarrow \alpha[\bar{r}, \bar{s}] = 1$$

$$\nu[\bar{r}, \bar{s}] \neq \nu[\bar{r}', \bar{s}] \Rightarrow \alpha[\bar{r}, \bar{s}] \neq \alpha[\bar{r}', \bar{s}]$$

Proof illustration: (nesting of solvability)

$$\mathsf{slv}(\bar{r},\bar{s}).\big[\mathsf{slv}(\bar{x},\bar{y}).\big[\phi(\bar{r},\bar{s},\bar{x},\bar{y}),\boldsymbol{1}\big],\boldsymbol{1}\big]$$

For
$$\bar{r}$$
: $\sum_{\bar{s}} \underline{\alpha[\bar{r}, \bar{s}] \cdot \nu_{\bar{s}}} = 1$

$$v[\bar{r}, \bar{s}] = 1 \Rightarrow \alpha[\bar{r}, \bar{s}] = 1$$
For \bar{r} : $\sum_{\bar{s}} 1 \cdot \nu[\bar{r}, \bar{s}] = 1$

$$v[\bar{r}, \bar{s}] \neq \nu[\bar{r}', \bar{s}] \Rightarrow \alpha[\bar{r}, \bar{s}] \neq \alpha[\bar{r}', \bar{s}]$$

How to formalise: "If v = 1 then $A \cdot x = 1$ solvable"

Proof illustration: (nesting of solvability)

$$\mathsf{slv}(\bar{\mathsf{r}},\bar{\mathsf{s}}).\big[\mathsf{slv}(\bar{\mathsf{x}},\bar{\mathsf{y}}).\big[\phi(\bar{\mathsf{r}},\bar{\mathsf{s}},\bar{\mathsf{x}},\bar{\mathsf{y}}),\mathbf{1}\big],\mathbf{1}\big]$$

For
$$\bar{r}$$
: $\sum_{\bar{s}} \underline{\alpha[\bar{r}, \bar{s}] \cdot \nu_{\bar{s}}} = 1$

$$v[\bar{r}, \bar{s}] = 1 \Rightarrow \alpha[\bar{r}, \bar{s}] = 1$$
For \bar{r} : $\sum_{\bar{s}} 1 \cdot \nu[\bar{r}, \bar{s}] = 1$

$$v[\bar{r}, \bar{s}] \neq \nu[\bar{r}', \bar{s}] \Rightarrow \alpha[\bar{r}, \bar{s}] \neq \alpha[\bar{r}', \bar{s}]$$

How to formalise: "If v = 1 then $A \cdot x = 1$ solvable"

$$A = \begin{bmatrix} -\nu + 1 & 1 \\ \vdots & \mathbf{x} = \\ -\nu + 1 & 1 \end{bmatrix}$$

Conclusion and outlook

Theorem

Every $FO+slv_F$ -formula is equivalent to a formula of the form

$$slv(\bar{x},\bar{y}).[\phi_M, \mathbf{1}], \text{ with } \phi_M \text{ quantifier-free.}$$

Theorem

k-ideal rings $\stackrel{\text{FP-red.}}{\Longrightarrow}$ cyclic groups of prime power order.

Conclusion and outlook

Theorem

Every FO+slv_F-formula is equivalent to a formula of the form

$$\mathsf{slv}(\bar{x},\bar{y}).\big[\phi_M,\boldsymbol{1}\big], \text{ with } \phi_M \text{ quantifier-free.}$$

Theorem

k-ideal rings $\stackrel{\text{FP-red.}}{\Longrightarrow}$ cyclic groups of prime power order.

Outlook: Permutation group membership (GM)

Given: Permutations π_1, \ldots, π_k and π on a set Ω

Question: Is $\pi \in \langle \pi_1, \ldots, \pi_l \rangle \leq S_{\Omega}$?

GM, $\#GM \in PTIME$

$$\begin{array}{ccc} \textbf{Theorem} & & \text{SIv}(\mathbf{D}) & \longmapsto & \text{GM} \ (\pi \in \langle \pi_1, \dots, \pi_k \rangle \leq S_\Omega?) \\ & & \text{FO} & \\ & & \text{rk}(\mathbf{F}) & \longmapsto & \#\text{GM}(\text{Compute:} \ |\langle \pi_1, \dots, \pi_k \rangle|) \end{array}$$

Theorem
$$Slv(\mathbf{D}) \longmapsto GM (\pi \in \langle \pi_1, \dots, \pi_k \rangle \leq S_{\Omega}?)$$
 $rk(\mathbf{F}) \longmapsto \#GM(Compute: |\langle \pi_1, \dots, \pi_k \rangle|)$

$$\bar{s} \in J$$

$$\bar{r} \in I \quad \mathbf{c}_{\bar{s}} := \begin{bmatrix} \vdots \\ x_{\bar{s}} \end{bmatrix} = \begin{bmatrix} \vdots \\ b_{\bar{r}} \\ \vdots \end{bmatrix}$$

Theorem
$$Slv(\mathbf{D}) \longmapsto GM (\pi \in \langle \pi_1, \dots, \pi_k \rangle \leq S_{\Omega}?)$$
 $rk(\mathbf{F}) \longmapsto \#GM(Compute: |\langle \pi_1, \dots, \pi_k \rangle|)$

Cayley's theorem: FO-definable embedding
$$\iota:(D,+)\to S_D$$

 \leadsto FO-definable embedding $\iota:(D,+)^I\to S_{I\times D}$