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FO+slv : First-order logic closed under solvability quantifier

FO+slvg : Solvability quantifier over a fixed finite field F
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Proof illustration: (nesting of solvability)
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Theorem
Every FO+slvp-formula is equivalent to a formula of the form

sIv()’c,g).[(pM, 1], with @ quantifier-free.

Theorem

FP-red.
k-ideal rings — cyclic groups of prime power order.

Outlook: Permutation group membership (GM)

Given: Permutations 711,...,7T and 7t on a set QO

Question: Is e (7y,...,mMm) < Sqa?

GM, #GM € PTIME
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Outlook: from solvability to group membership

Theorem Slv(D) ——— GM (e (m,..., ) < Sa?)
FO
rk(F) ——— #GM(Compute: |(717, ..., 7)|)

linear system is solvable

—

be(cs-d: deD,s)< (D,+)!

Cayley’s theorem: FO-definable embedding : (D,+) — Sp
~ FO-definable embedding 1 : (D, +)! = Sy,.p



