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Subshifts and cellular automata

The full shift over the alphabet S is the set SZ with the
product topology.

A subshift is a closed shift-invariant subset of the full shift –
or defined by a set of forbidden words.

A subshift X is transitive if u, v @ X =⇒ ∃w : uwv @ X ,
and mixing if the length of w can be chosen freely, as long as
it is long enough.

A cellular automaton is a continuous function on a subshift
that commutes with the left shift.
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SFTs and sofic shifts

If the set of forbidden words defining a subshift can be taken
to be finite, the subshift is said to be of finite type, an SFT.

Continuous shift-commuting maps (block codes) are the
natural morphisms of subshifts.

If there exists a block code from an SFT onto subshift Y ,
then Y is said to be sofic.

We say Y is a factor of X if X maps onto Y by a block code.

We say X and Y are conjugate if there exists a bijective block
code between them (its inverse is then also a block code by
compactness of subshifts).
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The limit set

The limit set of a cellular automaton f : X → X is usually
defined as ⋂

n

f n(X )

or the points with an infinite chain of preimages. The limit set
is always a subshift.

The idea is that this is that we get closer and closer to the
limit set of f as f is iterated.
When the system can evolve in multiple ways, and one is
chosen at each step, we can model this with a family of CA.
We define the limit set of such a family F as

⋂
n Ln(F) where

L0(F) = X and Li+1(F) =
⋃

f ∈F f (Li (F)).
Again, exactly the points that can appear arbitrarily late in a
system with these CA as the dynamics.
We will restrict to CA on the full shift.
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Stability and the stable and unstable hierarchies

Just like for the limit set of a single automaton, we say a limit
set is stable if the limit set is actually reached in a finite
amont of steps: Ln(X ) = Ln+1(X ) for some n.

This means that if a point x is mapped with any product of
any n cellular automata in the family considered, then the
resulting point y also has some infinite chain of preimages.

The classes k-LIMs and k-LIMu denote the classes of stable
and unstable limit sets of k cellular automata, 1-LIMs and
1-LIMu are just the usual stable and unstable limit sets. We
write k-LIMx for k-LIMs ∪ k-LIMu.

It is known that 1-LIMs and 1-LIMu are incomparable.
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An example of a complicated limit set of a CA family

Example

Consider the two automata f0 and f1 on the alphabet {0, 1,#}
where each fi has radius 1

2 , and the local rule of fi is given by the
following table:

0 1 #

0 0 0 #
1 1 1 #
# i i #

Now the limit set L({f0, f1}) is the subshift defined by the forbidden
words {#uv#w | n ∈ N, u,w ∈ {0, 1}n, v ∈ {0, 1,#}∗, u 6= w}.

(We do not know if this is an unstable limit set of a single CA, but
it seems unlikely.)
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Subshifts in two dimensions

We can give the same definitions in the space SZ2
, to obtain

the two-dimensional subshifts, in particular Z2 SFTs.

The possible contents of horizontal lines of a 2D SFT are
called its Z-projective subdynamics, and the class of such
subshifts is denoted PRO.

Limit sets of finite families of cellular automata can be
thought of as a concept between the usual limit sets and
projective subdynamics.
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We do not know if ∞-LIMx ⊂ PRO.

We can only prove that for a large class CLS of subshifts,
∞-LIMx ∩ CLS ⊂ PRO.

Such proofs amount to encoding the cellular automaton used
between pairs of rows in some way.

At least, PRO contains X × Y for any ∞-LIMx subshift X
and some subshift Y with only unary points (where Y chooses
the CA used at each step).
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A negative result for limit sets of CA families

A one-dimensional subshift X has universal period l if there
exists M such that for all x ∈ X there exists y with y = σl(y)
such that |{i | xi 6= yi}| ≤ M.

Lemma

[Ronnie Pavlov, Michael Schraudner] A zero-entropy proper
one-dimensional sofic shift X is realizable as the Z-projective
subdynamics of a Z2 SFT if and only if it has no universal period.

Corollary

A zero-entropy proper sofic shift with a universal period is not the
limit set of any finite family of CA.

Ville Salo, Ilkka Törmä On Stable and Unstable Limit Sets of Finite Families of Cellular Automata



Definitions and examples
Connection with tiling systems

The hierarchies 1-LIMs , 2-LIMs , . . . and 1-LIMu , 2-LIMu , . . .
Other observations and open problems

A negative result for limit sets of CA families

A one-dimensional subshift X has universal period l if there
exists M such that for all x ∈ X there exists y with y = σl(y)
such that |{i | xi 6= yi}| ≤ M.

Lemma

[Ronnie Pavlov, Michael Schraudner] A zero-entropy proper
one-dimensional sofic shift X is realizable as the Z-projective
subdynamics of a Z2 SFT if and only if it has no universal period.

Corollary

A zero-entropy proper sofic shift with a universal period is not the
limit set of any finite family of CA.
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Some limit sets which are Z-projective subdynamics

Another technique is to encode the automaton using periodic
points of the limit set X .

Theorem

If X is the limit set of a family of cellular automata containing at
least two periodic points, then X is realizable as the Z-projective
subdynamics of a Z2 SFT.

Corollary

All stable limit sets X of finite families of cellular automata are
realizable as the Z-projective subdynamics of a Z2 SFT.
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Proof scetch

Theorem

If X ∈ ∞-LIMx has at least two periodic points, then X ∈ PRO.

The subshift has a ‘data row’ every k steps, and the rows in
between have one of the two periodic points (‘control rows’).
The SFT rule can locate the data rows if the allowed
combinations of periodic points are chosen appropriately.

Now, the CA that is run from one data run to the next is
determined by what is encoded in the k control rows in
between.
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Other observations and open problems

The results on the hierarchies 1-LIMs , 2-LIMs , . . . and
1-LIMu, 2-LIMu, . . .

We can prove that each level of each hierarchy is disjoint from
the other hierarchy.

Using known results in symbolic dynamics and some
techniques of our own, we can prove that both hierarchies are
proper.

However, the properness requires nontransitive subshifts, and
for transitive subshifts, we can in fact prove that the stable
hierarchy collapses to 1-LIMs , and ∞-LIMu ∩ T RA ⊂ 1-LIMx

where T RA denotes the transitive subshifts.
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Definitions and examples
Connection with tiling systems

The hierarchies 1-LIMs , 2-LIMs , . . . and 1-LIMu , 2-LIMu , . . .
Other observations and open problems

Properness of the hierarchies

The idea is to first find, for any k, k SFTs that do not factor
onto each other which all contain a unary point.

For this, in order to easily access tools from symbolic
dynamics we need to represent our SFTs with matrices:

To a square n × n matrix A over the natural numbers we
associate a graph with n vertices and Aij edges from vertex i
to vertex j .
To each finite graph we associate its edge shift by taking all
the valid bi-infinite paths. This is easily seen to be an SFT,
and every SFT can be represented by a graph, up to conjugacy.
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Other observations and open problems

Definition

If A is a primitive (‘mixing’) integral matrix, let λA be its greatest
eigenvalue with respect to absolute value, and sp×(A) the
unordered list (or multiset) of its eigenvalues, called the nonzero
spectrum of A. We use the notation 〈λ1, . . . , λk〉 for the unordered
list containing the elements λi .

Lemma (Lind & Markus, Symbolic Dynamics and Coding)

The entropy of the edge shift X defined by a primitive integral
matrix A is log λA.
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The hierarchies 1-LIMs , 2-LIMs , . . . and 1-LIMu , 2-LIMu , . . .
Other observations and open problems

Lemma (Lind & Markus, Symbolic Dynamics and Coding)

If the edge shifts X and Y defined by two primitive integral
matrices A and B, respectively, have the same entropy and X
factors onto Y , then sp×(B) ⊂ sp×(A).

To recapitulate,

SFTs are essentially edge shifts defined by matrices.

We call the set of nonzero eigenvalues of a matrix its nonzero
spectrum.

A factoring relation between mixing edge shifts with the same
entropy implies a subset relation between the nonzero spectra
of their matrices.

Ville Salo, Ilkka Törmä On Stable and Unstable Limit Sets of Finite Families of Cellular Automata



Definitions and examples
Connection with tiling systems

The hierarchies 1-LIMs , 2-LIMs , . . . and 1-LIMu , 2-LIMu , . . .
Other observations and open problems

Lemma (Lind & Markus, Symbolic Dynamics and Coding)

If the edge shifts X and Y defined by two primitive integral
matrices A and B, respectively, have the same entropy and X
factors onto Y , then sp×(B) ⊂ sp×(A).

To recapitulate,

SFTs are essentially edge shifts defined by matrices.

We call the set of nonzero eigenvalues of a matrix its nonzero
spectrum.

A factoring relation between mixing edge shifts with the same
entropy implies a subset relation between the nonzero spectra
of their matrices.
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So, it’s enough to find k matrices with the same largest eigenvalue,
but no subset relations between the nonzero spectra. This can be
done using the following lemma:

Lemma (Lind & Markus, Symbolic Dynamics and Coding)

Let A be a primitive integral matrix and B an integral matrix such
that λB < λA, and

trn(sp×(A)) + trn(sp×(B)) ≥ 0 for all n ≥ 1.

Then there is a primitive integral matrix C such that
sp×(C ) = sp×(A) ∪ sp×(B).

The matrices A = [λ] and Bi = [i ] satisfy the requirements of the
lemma for i < k and large enough λ > k . Clearly, {i , λ} have no
subset relations, and the matrices with these nonzero spectra have
the same largest eigenvalue λ.
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We thus have:

Lemma

For all k ∈ N, there exists a finite alphabet Sk , a symbol a ∈ Sk

and a set {X1, . . . ,Xk} of k mixing edge shifts over Sk such that
whenever i 6= j , we have that Xi does not factor onto Xj ,
Xi ∩ Xj = ∞a∞ and B1(Xi ) ∩ B1(Xj) = a.

From this, we extract the properness of both hierarchies (k-LIMs)k
and (k-LIMu)k .
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The hierarchies 1-LIMs , 2-LIMs , . . . and 1-LIMu , 2-LIMu , . . .
Other observations and open problems

Proof scetch of properness of stable hierarchy: realizing
the union of the Xi with k automata

First, we show X =
⋃

i Xi is in k-LIMs .

Let fi have Xi as its (stable) limit set. This is possible since
Xi are mixing SFTs and have unary points.

We extend fi to the alphabet Sk by considering symbols in
B1(Xj) as a for j 6= i .

Then {f1, . . . , fk} has X =
⋃

i Xi as its limit set.
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Other observations and open problems

Proof scetch of properness of stable hierarchy: extracting a
factoring relation from any smaller family

No, assume that X ∈ (k − 1)-LIMs and let {f1, . . . , fk−1} be a
CA family whose limit set it is. Let this limit set be reached in
n steps.

Take a doubly transitive point in some Xi . It must have a
preimage with some fm, which implies that some Xj must be
mapped onto Xi by fm. In fact, it is easy to see that fm must
also map Xj into Xi , and so i = j by the assumption that
there are no factoring relations.

Since there are k − 1 CA and k SFTs, some fm must map
both Xi and Xj onto themselves.

Now, using the point ∞a∞ ⊂ Xi ∩ Xj we easily find a point in
SZ
k which is not mapped to X in n steps.
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The hierarchies 1-LIMs , 2-LIMs , . . . and 1-LIMu , 2-LIMu , . . .
Other observations and open problems

Properness of unstable hierarchy and collapse in the
transitive case

The unstable hierarchy is handled similarly to the stable one,
although we need some further tricks:

We make the automata fi unstable by taking a cartesian
product with a sofic shift that can be implemented in an
unstable way, but which is trivial enough not to break the
argumentation.
We use a slightly more complicated argument to find a point
in the full shift that can never go to one of the Xi .

The collapse of the transitive hierarchies follows from doubly
transitive points: such a point has a preimage, so one of the
automata fi is in fact surjective on the limit set X . This in
fact means fi has X as its limit set.

This collapses ∞-LIMs into 1-LIMs and ∞-LIMu into 1-LIMx .
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product with a sofic shift that can be implemented in an
unstable way, but which is trivial enough not to break the
argumentation.
We use a slightly more complicated argument to find a point
in the full shift that can never go to one of the Xi .

The collapse of the transitive hierarchies follows from doubly
transitive points: such a point has a preimage, so one of the
automata fi is in fact surjective on the limit set X . This in
fact means fi has X as its limit set.

This collapses ∞-LIMs into 1-LIMs and ∞-LIMu into 1-LIMx .
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∞-LIMs is closed under union.

If X ∈ ∞-LIMs , then X is a finite union of subshifts in 2-LIMs .
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Open problems

Are all limit sets of CA families in PRO?

Is the unstable hierarchy proper when restricted to transitive
subshifts? Note that the growing part of the hierarchy would
have to grow within 1-LIMs , crazy right? However, the
intersection 1-LIMs ∩ 1-LIMu is not well-understood, and for a
long time, it was thought to be empty. See [Limit sets of
stable and unstable cellular automata] for an example.

Is ∞-LIMu closed under union?

If X ∈ 2-LIMs , is X a finite union of subshifts in 1-LIMs?
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Ville Salo, Ilkka Törmä On Stable and Unstable Limit Sets of Finite Families of Cellular Automata



Definitions and examples
Connection with tiling systems

The hierarchies 1-LIMs , 2-LIMs , . . . and 1-LIMu , 2-LIMu , . . .
Other observations and open problems

Open problems

Are all limit sets of CA families in PRO?

Is the unstable hierarchy proper when restricted to transitive
subshifts? Note that the growing part of the hierarchy would
have to grow within 1-LIMs , crazy right? However, the
intersection 1-LIMs ∩ 1-LIMu is not well-understood, and for a
long time, it was thought to be empty. See [Limit sets of
stable and unstable cellular automata] for an example.

Is ∞-LIMu closed under union?

If X ∈ 2-LIMs , is X a finite union of subshifts in 1-LIMs?
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