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What is Default Logic?

What is Default Logic?

a non-monotone logic, introduced 1980 by Reiter

models common-sense reasoning

extends classical logic with default rules

undecidable for first order logic (Reiter)

here: propositional logic
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Default Rules and Theories

Definition (Reiter 80)

A default rule is a triple α : β
γ , where

α is called the prerequisite,

β is called the justification, and

γ is called the consequent,

for α, β, γ propositional formulae.

Informally: infer a formula γ from a set of formulae W by a default rule
α : β
γ , if

α is derivable from W and

β is consistent with W .
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Default Theories

Definition (Reiter 80)

A default theory is a tuple 〈W ,D〉, where W is a set of formulae and D is
a set of default rules.

Example: Playing Football with Default Rules

W := {football , rain, cold ∧ rain→ snow}

D :=

{
football : ¬snow

takesPlace

}
¬snow is consistent with W . Hence we can infer takesPlace.

Default logics are non-monotone!
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Semantics: Stable Extensions

Definition (Reiter 80)

For default theory 〈W ,D〉 and set of formulae E , we define Γ(E ) as the
smallest set, s.t.

1 W ⊆ Γ(E ),

2 Γ(E ) is closed under deduction, and

3 for all defaults α : β
γ with α ∈ Γ(E ) and ¬β /∈ E , it holds that

γ ∈ Γ(E ).

A stable extension of 〈W ,D〉 is a set E s.t. E = Γ(E ).

Stable extensions correspond to possible views of an agent on the basis of
〈W ,D〉.
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Generating Defaults

Semantics: Generating Defaults (Reiter 80)

Given: a default theory 〈W ,D〉 and set of formulae E :

Define the set of generating defaults as

G :=
{α : β

γ
∈ D

∣∣∣ α ∈ E and ¬β /∈ E
}
.

Then: E is stable a extension of 〈W ,D〉 iff

E = Th

(
W ∪

{
γ
∣∣∣ α : β

γ
∈ G

})
.
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The Decision Problem

Extension Existence Problem

Instance: a default theory 〈W ,D〉
Question: Does 〈W ,D〉 have a stable extension?

Theorem (Gottlob 92)

The Extension Existence Problem is ΣP
2 -complete.
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Boolean function, B-formula

n-ary Boolean function f : {0, 1}n → {0, 1}

Let B be a set of Boolean functions.

A B-formula is a formula whose connectives are functions from B
L(B) denotes the set of all B-formulae

B = {∨,¬, f , g}

¬x
x ∨ ¬y
¬(x ∨ y) ∨ z
¬¬¬x
f (g(x , y), f (x , g(z , y), y), z)

 ∈ L(B)
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Parameterized Complexity Theory

Definition (FPT)

Q ⊆ Σ∗ a decision problem

κ : Σ∗ → N associates a parameter to the instances

A is an fpt-algorithm for (Q, κ) if there is a computable function
f : N→ N, a polynomial p s.t. A decides Q and for every
input x , As runtime is at most f (k) · p(|x |), where k = κ(x).

(Q, κ) is fixed-parameter tractable if there is an fpt-algorithm that decides
(Q, κ). All such problems are in the class FPT.
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tree width

a parameter definable on any relational structure

graph: intuitively it measures the distance of the graph from a tree

many NP-hard problems become FPT with this parameter

this parameter is not computable in polynomial time (but FPT)

Powerfull Theorem by Courcelle: all MSO-definable problems become FPT
with the tree width parameter
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A handy tool

Definition

Let Q be a decision problem, x be an instance.
Q is MSO-definable iff there exists an MSO-formula φQ and a function
x 7→ Ax s.t. it holds that x ∈ Q if and only if Ax |= φQ .

Theorem (Courcelle 1990, Elberfeld Jakoby Tantau 2010)

Let Q be an MSO-definable decision problem, and let Ax be the structure
associated with an instance x. Further let k ∈ N s.t. the treewidth of Ax

is bounded by k. Then Q is solvable in time O(f (k) · |x |) and space
O(log(f (k)) + log |x |).

Describe a problem with MSO-formula φ.
Apply Courcelle’s Theorem and get an FPT-result.
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Express a Set of Boolean Functions Γ in MSO

Let B be a set of Boolean functions. Define the Vocabulary as

τB :={const1
f | f ∈ B, arity(f ) = 0}∪

{conn2
f ,i | f ∈ B, 1 ≤ i ≤ arity(f )},

τB,prop :=τB ∪ {variable1, formula1}.

for constants f

ith argument of f
for variables

for formulae

With Γ a set of B-formulae we associate the τB,prop-structure AΓ.

Universe: Formulae and their subformulae.
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J. Schmidt (Université de la Méditerranée) Param. Complexity of Nonmontone Logics LATA 2012, A Coruña, Spain 12 / 20



Express a Set of Boolean Functions Γ in MSO

Let B be a set of Boolean functions. Define the Vocabulary as

τB :={const1
f | f ∈ B, arity(f ) = 0}∪

{conn2
f ,i | f ∈ B, 1 ≤ i ≤ arity(f )},

τB,prop :=τB ∪ {variable1, formula1}.

for constants f

ith argument of f
for variables

for formulae

With Γ a set of B-formulae we associate the τB,prop-structure AΓ.

Universe: Formulae and their subformulae.
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Expressing Satisfiability

Lemma

Let B be a finite set of Boolean functions. Then there exists an
MSO-formula θsat over τB,prop such that for Γ ⊆ L(B)

Γ is satisfiable iff AΓ |= θsat.

Proof (sketch)

Consider the MSO-formula

θsat := θstruc ∧ ∃M
(
θassign(M) ∧ ∀x

(
formula(x)→ M(x)

)

Let f (1) = 0, g(0, 1) = 1. θassign(M) demands that, if x ∈ M, then

g(f (x), x) ∈ M and
f (x) /∈ M.
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Expressing Implication

Let B be a set of Boolean functions and F ,G be sets of B-formulae.
Extend our vocabulary to express F |= G :

τB,imp := τB,prop ∪ {formula1
prem, formula1

conc},

where formulaprem(x) is true iff x represents a formula from F ,
and formulaconc(x) is true iff x represents a formula from G .
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Lemma

Let B be a finite set of Boolean functions. Then there exists an
MSO-formula θimp over τB,imp such that for any Γ ⊆ L(B) and any
∆1,∆2 ⊆ Γ it holds that there exists a structure AΓ such that

∆1 |= ∆2 iff and AΓ |= θimp.

Proof.

Define the MSO-formulae θpremise(M), θconclusion(M), and θimplies as
follows:

θpremise(M) :=∀x(formulaprem(x)→ M(x))

θconclusion(M) :=∀x(formulaconc(x)→ M(x)))

θimplies :=∀M
((
θassign(M) ∧ θpremise(M)

)
→ θconclusion(M)

)
Then, we can define the formulae θimp as θimp := θstruc ∧ θimplies.
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On the Way to Default Logic: Extend the Vocabulary

Default Theory (W ,D), where D := {αi :βi
γi
| 1 ≤ i ≤ n}.

τB,dl := τB,imp ∪ {kb1, def1, prem2, concl2, just2}
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Extension Existence of Default Logic

Lemma

Let B be a finite set of Boolean functions, (W ,D) a B-default theory and
A(W ,D) the associated structrue. Then there exists an MSO-formula
θextension such that (W ,D) possesses a stable extension iff
A(W ,D) |= θextension.

Proof.

θextension := θstruc ∧ ∃G (θstable(G )), where

θstable(G ) := ∀d
(
def(d)→ (G (d)↔ θapp(d ,G ))

)

J. Schmidt (Université de la Méditerranée) Param. Complexity of Nonmontone Logics LATA 2012, A Coruña, Spain 17 / 20



Extension Existence of Default Logic

Lemma

Let B be a finite set of Boolean functions, (W ,D) a B-default theory and
A(W ,D) the associated structrue. Then there exists an MSO-formula
θextension such that (W ,D) possesses a stable extension iff
A(W ,D) |= θextension.

Proof.

θextension := θstruc ∧ ∃G (θstable(G )), where

θstable(G ) := ∀d
(
def(d)→ (G (d)↔ θapp(d ,G ))

)
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Apply Courcelle’s Theorem

Theorem

Let B be a finite set of Boolean functions, let k ∈ N be fixed, and let
(W ,D) be a B-default theory such that the treewidth of structures for
θextension is bounded by k.

Then the extension existence problem for B-default logic is solvable in
time O(f (k) · |(W ,D)|) and space O(log(f (k)) + log |(W ,D)|).

Lower bounds

Theorem

There exists a family of (very simple) default theories (∅,D)k such that
the tree width of A(∅,D)k is not constant.
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Transfer to Autoepistemic Logic

Introduced by Moore 1985.

New modal operator L to model the beliefs of a perfect rational agent.

Satisfiability and reasoning ΣP
2 -complete.

Theorem

Let B be a finite set of Boolean functions, let k ∈ N be fixed, and let Σ be
a set of autoepistemic B-formulae such that AΣ has tree width bounded
by k. Then the expansion problem is solvable in time O(f (k) · |Σ|) and
space O(log(f (k)) + log |Σ|).
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What Did We Learn and What is Next?

We got some intuition about nonmonotonicity.

We learned how to apply Courcelle’s Theorem.

We enjoyed Monadic Second Order Logic. A lot.

Further (not in this talk) we exhibit lower bounds for very restricted

default theories,

sets of autoepistemic formulae, and

sets of propositional formulae (w.r.t. the implication problem).

The next two steps involve:

Thinking about useful kinds of parameterizations of propositional
Default Logic beyond treewidth.

And the same for autoepistemic logic.

Thank you!
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