On the Parameterized Complexity of Default Logic and Autoepistemic Logic

Arne Meier Johannes Schmidt Michael Thomas Heribert Vollmer

Universität Hannover

Université de la Méditerranée

TWT GmbH

2012-03-08 Lata 2012, A Coruña, Spain

What is Default Logic?

What is Default Logic?

- a non-monotone logic, introduced 1980 by Reiter
- models common-sense reasoning
- extends classical logic with *default rules*

What is Default Logic?

What is Default Logic?

- a non-monotone logic, introduced 1980 by Reiter
- models common-sense reasoning
- extends classical logic with default rules
- undecidable for first order logic (Reiter)
- here: propositional logic

Default Rules and Theories

Definition (Reiter 80) A default rule is a triple $\frac{\alpha : \beta}{\gamma}$, where α is called the prerequisite, β is called the justification, and γ is called the consequent, for α, β, γ propositional formulae.

Default Rules and Theories

Definition (Reiter 80) A default rule is a triple $\frac{\alpha:\beta}{\gamma}$, where α is called the prerequisite, β is called the justification, and γ is called the consequent. for α, β, γ propositional formulae. Informally: infer a formula γ from a set of formulae W by a default rule $\frac{\alpha:\beta}{\gamma}$, if

- α is derivable from W and
- β is consistent with W.

Default Theories

Definition (Reiter 80)

A default theory is a tuple $\langle W, D \rangle$, where W is a set of formulae and D is a set of default rules.

Example: Playing Football with Default Rules

$$W := \{ football, rain, cold \land rain \to snow \}$$
 $D := \left\{ rac{football : \neg snow}{takesPlace}
ight\}$

 \neg *snow* is consistent with W. Hence we can infer *takesPlace*.

Default Theories

Definition (Reiter 80)

A default theory is a tuple $\langle W, D \rangle$, where W is a set of formulae and D is a set of default rules.

Example: Playing Football with Default Rules

$$egin{aligned} W &:= \{ ext{football}, ext{rain}, ext{cold} \land ext{rain} &
ightarrow ext{snow}, ext{cold} \} \ D &:= \left\{ rac{ ext{football} : \neg ext{snow}}{ ext{takesPlace}}
ight\} \end{aligned}$$

 \neg *snow* is inconsistent with W. Hence we cannot infer *takesPlace*.

Default logics are non-monotone!

Semantics: Stable Extensions

Definition (Reiter 80)

For default theory $\langle W, D \rangle$ and set of formulae *E*, we define $\Gamma(E)$ as the smallest set, s.t.

- $W \subseteq \Gamma(E)$,
- **2** $\Gamma(E)$ is closed under deduction, and
- for all defaults $\frac{\alpha : \beta}{\gamma}$ with $\alpha \in \Gamma(E)$ and $\neg \beta \notin E$, it holds that $\gamma \in \Gamma(E)$.

A stable extension of $\langle W, D \rangle$ is a set E s.t. $E = \Gamma(E)$.

Semantics: Stable Extensions

Definition (Reiter 80)

For default theory $\langle W, D \rangle$ and set of formulae *E*, we define $\Gamma(E)$ as the smallest set, s.t.

- $W \subseteq \Gamma(E)$,
- **2** $\Gamma(E)$ is closed under deduction, and
- for all defaults $\frac{\alpha : \beta}{\gamma}$ with $\alpha \in \Gamma(E)$ and $\neg \beta \notin E$, it holds that $\gamma \in \Gamma(E)$.
- A stable extension of $\langle W, D \rangle$ is a set E s.t. $E = \Gamma(E)$.

Stable extensions correspond to possible views of an agent on the basis of $\langle W, D \rangle$.

Generating Defaults

Semantics: Generating Defaults (Reiter 80) Given: a default theory $\langle W, D \rangle$ and set of formulae *E*:

Define the set of generating defaults as

$$G := \Big\{ \frac{lpha : eta}{\gamma} \in D \Big| lpha \in E \text{ and } \neg eta \notin E \Big\}.$$

Then: E is stable a extension of $\langle W, D \rangle$ iff

$$E = \operatorname{Th}\left(W \cup \left\{\gamma \mid \frac{\alpha : \beta}{\gamma} \in G\right\}\right).$$

The Decision Problem

Extension Existence Problem

Instance: a default theory $\langle W, D \rangle$ Question: Does $\langle W, D \rangle$ have a stable extension?

Theorem (Gottlob 92)

The Extension Existence Problem is Σ_2^P -complete.

Boolean function, B-formula

n-ary Boolean function $f : \{0,1\}^n \rightarrow \{0,1\}$

Let B be a set of Boolean functions.

A *B*-formula is a formula whose connectives are functions from *B* $\mathcal{L}(B)$ denotes the set of all *B*-formulae

Boolean function, B-formula

n-ary Boolean function $f : \{0,1\}^n \rightarrow \{0,1\}$

Let B be a set of Boolean functions.

A *B*-formula is a formula whose connectives are functions from *B* $\mathcal{L}(B)$ denotes the set of all *B*-formulae

$B = \{\lor, \neg, f, g\}$	
$\neg \chi$)
$x \lor \neg y$	
$\neg(x \lor y) \lor z$	$\left. \right\} \in \mathcal{L}(B)$
$\neg \neg \neg X$	
f(g(x, y), f(x, g(z, y), y), z)	J

Parameterized Complexity Theory

Definition (FPT)

- $Q \subseteq \Sigma^*$ a decision problem
- $\kappa: \Sigma^* \to \mathbb{N}$ associates a parameter to the instances

A is an fpt-algorithm for (Q, κ) if there is a computable function
f: N → N, a polynomial p s.t. A decides Q and for every input x, As runtime is at most f(k) · p(|x|), where k = κ(x).
(Q, κ) is fixed-parameter tractable if there is an fpt-algorithm that decides (Q, κ). All such problems are in the class FPT.

tree width

- a parameter definable on any relational structure
- graph: intuitively it measures the distance of the graph from a tree
- many NP-hard problems become FPT with this parameter
- this parameter is not computable in polynomial time (but FPT)

tree width

- a parameter definable on any relational structure
- graph: intuitively it measures the distance of the graph from a tree
- many NP-hard problems become FPT with this parameter
- this parameter is not computable in polynomial time (but FPT)

Powerfull Theorem by Courcelle: all MSO-definable problems become FPT with the tree width parameter

A handy tool

Definition

Let Q be a decision problem, x be an instance. Q is MSO-definable iff there exists an MSO-formula ϕ_Q and a function $x \mapsto A_x$ s.t. it holds that $x \in Q$ if and only if $A_x \models \phi_Q$.

A handy tool

Definition

Let Q be a decision problem, x be an instance. Q is MSO-definable iff there exists an MSO-formula ϕ_Q and a function $x \mapsto \mathcal{A}_x$ s.t. it holds that $x \in Q$ if and only if $\mathcal{A}_x \models \phi_Q$.

Theorem (Courcelle 1990, Elberfeld Jakoby Tantau 2010)

Let Q be an MSO-definable decision problem, and let A_x be the structure associated with an instance x. Further let $k \in \mathbb{N}$ s.t. the treewidth of A_x is bounded by k. Then Q is solvable in time $O(f(k) \cdot |x|)$ and space $O(\log(f(k)) + \log |x|)$.

A handy tool

Definition

Let Q be a decision problem, x be an instance. Q is MSO-definable iff there exists an MSO-formula ϕ_Q and a function $x \mapsto \mathcal{A}_x$ s.t. it holds that $x \in Q$ if and only if $\mathcal{A}_x \models \phi_Q$.

Theorem (Courcelle 1990, Elberfeld Jakoby Tantau 2010)

Let Q be an MSO-definable decision problem, and let A_x be the structure associated with an instance x. Further let $k \in \mathbb{N}$ s.t. the treewidth of A_x is bounded by k. Then Q is solvable in time $O(f(k) \cdot |x|)$ and space $O(\log(f(k)) + \log |x|)$.

Describe a problem with MSO-formula ϕ . Apply Courcelle's Theorem and get an FPT-result.

• Let B be a set of Boolean functions. Define the Vocabulary as

$$\tau_{B} := \{ \operatorname{const}_{f}^{1} \mid f \in B, \operatorname{arity}(f) = 0 \} \cup \\ \{ \operatorname{conn}_{f,i}^{2} \mid f \in B, 1 \le i \le \operatorname{arity}(f) \}, \\ \tau_{B,prop} := \tau_{B} \cup \{ \operatorname{variable}^{1}, \operatorname{formula}^{1} \}.$$

• Let B be a set of Boolean functions. Define the Vocabulary as

for constants
$$f$$

 $\tau_B := \{ \text{const}_f^1 \mid f \in B, \text{arity}(f) = 0 \} \cup \{ \text{cons}_{f,i}^2 \mid f \in B, 1 \le i \le \text{arity}(f) \}, \tau_{B,prop} := \tau_B \cup \{ \text{variable}^1, \text{formula}^1 \}.$

• Let B be a set of Boolean functions. Define the Vocabulary as

for constants
$$f$$

 $\tau_B := \{ \text{const}_f^1 \mid f \in B, \text{arity}(f) = 0 \} \cup$
 $\{ \text{conn}_{f,i}^2 \mid f \in B, 1 \le i \le \text{arity}(f) \},$
 $\tau_{B,prop} := \tau_B \cup \{ \text{variable}^1, \text{formula}^1 \}.$

ith argument of f

• Let B be a set of Boolean functions. Define the Vocabulary as

With Γ a set of *B*-formulae we associate the $\tau_{B,prop}$ -structure \mathcal{A}_{Γ} .

Universe: Formulae and their subformulae.

Expressing Satisfiability

Lemma

Let B be a finite set of Boolean functions. Then there exists an MSO-formula θ_{sat} over $\tau_{B,prop}$ such that for $\Gamma \subseteq \mathcal{L}(B)$

 Γ is satisfiable iff $\mathcal{A}_{\Gamma} \models \theta_{sat}$.

Expressing Satisfiability

Lemma

Let B be a finite set of Boolean functions. Then there exists an MSO-formula θ_{sat} over $\tau_{B,prop}$ such that for $\Gamma \subseteq \mathcal{L}(B)$

 Γ is satisfiable iff $\mathcal{A}_{\Gamma} \models \theta_{sat}$.

Proof (sketch)

Consider the MSO-formula

$$\theta_{sat} := \theta_{struc} \land \exists M \big(\theta_{assign}(M) \land \forall x \big(\text{formula}(x) \to M(x) \big) \big)$$

Expressing Satisfiability

Lemma

Let B be a finite set of Boolean functions. Then there exists an MSO-formula θ_{sat} over $\tau_{B,prop}$ such that for $\Gamma \subseteq \mathcal{L}(B)$

 Γ is satisfiable iff $\mathcal{A}_{\Gamma} \models \theta_{sat}$.

Proof (sketch)

Consider the MSO-formula

$$\theta_{sat} := \theta_{struc} \land \exists M \big(\theta_{assign}(M) \land \forall x \big(\text{formula}(x) \to M(x) \big) \big)$$

Let f(1) = 0, g(0, 1) = 1. $\theta_{assign}(M)$ demands that, if $x \in M$, then $g(f(x), x) \in M$ and $f(x) \notin M$.

Expressing Implication

Let *B* be a set of Boolean functions and *F*, *G* be sets of *B*-formulae. Extend our vocabulary to express $F \models G$:

$$\tau_{B,imp} := \tau_{B,prop} \cup \{\text{formula}_{prem}^1, \text{formula}_{conc}^1\},\$$

where $formula_{prem}(x)$ is true iff x represents a formula from F, and $formula_{conc}(x)$ is true iff x represents a formula from G.

Let B be a finite set of Boolean functions. Then there exists an MSO-formula θ_{imp} over $\tau_{B,imp}$ such that for any $\Gamma \subseteq \mathcal{L}(B)$ and any $\Delta_1, \Delta_2 \subseteq \Gamma$ it holds that there exists a structure \mathcal{A}_{Γ} such that

 $\Delta_1 \models \Delta_2$ iff and $\mathcal{A}_{\Gamma} \models \theta_{imp}$.

Proof.

Define the MSO-formulae $\theta_{premise}(M)$, $\theta_{conclusion}(M)$, and $\theta_{implies}$ as follows:

Let B be a finite set of Boolean functions. Then there exists an MSO-formula θ_{imp} over $\tau_{B,imp}$ such that for any $\Gamma \subseteq \mathcal{L}(B)$ and any $\Delta_1, \Delta_2 \subseteq \Gamma$ it holds that there exists a structure \mathcal{A}_{Γ} such that

$$\Delta_1 \models \Delta_2$$
 iff and $\mathcal{A}_{\Gamma} \models \theta_{imp}$.

Proof.

Define the MSO-formulae $\theta_{premise}(M)$, $\theta_{conclusion}(M)$, and $\theta_{implies}$ as follows:

 $\theta_{premise}(M) := \forall x (\text{formula}_{prem}(x) \to M(x))$

Let B be a finite set of Boolean functions. Then there exists an MSO-formula θ_{imp} over $\tau_{B,imp}$ such that for any $\Gamma \subseteq \mathcal{L}(B)$ and any $\Delta_1, \Delta_2 \subseteq \Gamma$ it holds that there exists a structure \mathcal{A}_{Γ} such that

$$\Delta_1 \models \Delta_2$$
 iff and $\mathcal{A}_{\Gamma} \models \theta_{imp}$.

Proof.

Define the MSO-formulae $\theta_{premise}(M)$, $\theta_{conclusion}(M)$, and $\theta_{implies}$ as follows:

 $\theta_{premise}(M) := \forall x (\text{formula}_{prem}(x) \to M(x))$ $\theta_{conclusion}(M) := \forall x (\text{formula}_{conc}(x) \to M(x)))$

Let B be a finite set of Boolean functions. Then there exists an MSO-formula θ_{imp} over $\tau_{B,imp}$ such that for any $\Gamma \subseteq \mathcal{L}(B)$ and any $\Delta_1, \Delta_2 \subseteq \Gamma$ it holds that there exists a structure \mathcal{A}_{Γ} such that

$$\Delta_1 \models \Delta_2$$
 iff and $\mathcal{A}_{\Gamma} \models \theta_{imp}$.

Proof.

Define the MSO-formulae $\theta_{premise}(M)$, $\theta_{conclusion}(M)$, and $\theta_{implies}$ as follows:

$$\begin{split} \theta_{premise}(M) &:= \forall x (\text{formula}_{prem}(x) \to M(x)) \\ \theta_{conclusion}(M) &:= \forall x (\text{formula}_{conc}(x) \to M(x))) \\ \theta_{implies} &:= \forall M \Big(\big(\theta_{assign}(M) \land \theta_{premise}(M) \big) \to \theta_{conclusion}(M) \Big) \end{split}$$

Let B be a finite set of Boolean functions. Then there exists an MSO-formula θ_{imp} over $\tau_{B,imp}$ such that for any $\Gamma \subseteq \mathcal{L}(B)$ and any $\Delta_1, \Delta_2 \subseteq \Gamma$ it holds that there exists a structure \mathcal{A}_{Γ} such that

$$\Delta_1 \models \Delta_2$$
 iff and $\mathcal{A}_{\Gamma} \models \theta_{imp}$.

Proof.

Define the MSO-formulae $\theta_{premise}(M)$, $\theta_{conclusion}(M)$, and $\theta_{implies}$ as follows:

$$\begin{split} \theta_{premise}(M) &:= \forall x (\text{formula}_{prem}(x) \to M(x)) \\ \theta_{conclusion}(M) &:= \forall x (\text{formula}_{conc}(x) \to M(x))) \\ \theta_{implies} &:= \forall M \Big(\big(\theta_{assign}(M) \land \theta_{premise}(M) \big) \to \theta_{conclusion}(M) \Big) \end{split}$$

Then, we can define the formulae θ_{imp} as $\theta_{imp} := \theta_{struc} \wedge \theta_{implies}$.

Default Theory (W, D), where $D := \{\frac{\alpha_i:\beta_i}{\gamma_i} \mid 1 \le i \le n\}$.

$$\tau_{B,dl} := \tau_{B,imp} \cup \{kb^1, def^1, prem^2, concl^2, just^2\}$$

Default Theory (*W*, *D*), where $D := \{\frac{\alpha_i:\beta_i}{\gamma_i} \mid 1 \le i \le n\}$. $\tau_{B,dl} := \tau_{B,imp} \cup \{kb^1, def^1, prem^2, concl^2, just^2\}$

Default Theory (*W*, *D*), where $D := \{\frac{\alpha_i; \beta_i}{\gamma_i} \mid 1 \le i \le n\}$. $\tau_{B,dl} := \tau_{B,imp} \cup \{kb^1, def^1, prem^2, concf^2, just^2\}$

Default Theory (W, D), where $D := \{\frac{\alpha_i; \beta_i}{\gamma_i} \mid 1 \le i \le n\}$. $\tau_{B,dl} := \tau_{B,imp} \cup \{kb^1, def^1, prem^2, concf^2, just^2\}$

Default Theory (W, D), where $D := \{\frac{\alpha_i; \beta_i}{\gamma_i} \mid 1 \le i \le n\}$. $\tau_{B, dl} := \tau_{B, imp} \cup \{kb^1, def^1, prem^2, concf^2, just^2\}$

Default Theory (W, D), where
$$D := \{\frac{\alpha_i;\beta_i}{\gamma_i} \mid 1 \le i \le n\}$$
.
 $\tau_{B,dl} := \tau_{B,imp} \cup \{kb^1, def^1, prem^2, concl^2, just^2\}$

Extension Existence of Default Logic

Lemma

Let B be a finite set of Boolean functions, (W, D) a B-default theory and $\mathcal{A}_{(W,D)}$ the associated structrue. Then there exists an MSO-formula $\theta_{\text{extension}}$ such that (W, D) possesses a stable extension iff $\mathcal{A}_{(W,D)} \models \theta_{\text{extension}}$.

Extension Existence of Default Logic

Lemma

Let B be a finite set of Boolean functions, (W, D) a B-default theory and $\mathcal{A}_{(W,D)}$ the associated structrue. Then there exists an MSO-formula $\theta_{\text{extension}}$ such that (W, D) possesses a stable extension iff $\mathcal{A}_{(W,D)} \models \theta_{\text{extension}}$.

Proof.

$$\begin{array}{l} \theta_{extension} := \theta_{struc} \land \exists G(\theta_{stable}(G)), \text{ where} \\ \\ \theta_{stable}(G) := \forall d \big(def(d) \rightarrow (G(d) \leftrightarrow \theta_{app}(d,G)) \big) \end{array}$$

Apply Courcelle's Theorem

Theorem

Let B be a finite set of Boolean functions, let $k \in \mathbb{N}$ be fixed, and let (W, D) be a B-default theory such that the treewidth of structures for $\theta_{\text{extension}}$ is bounded by k.

Then the extension existence problem for B-default logic is solvable in time $O(f(k) \cdot |(W, D)|)$ and space $O(\log(f(k)) + \log |(W, D)|)$.

Apply Courcelle's Theorem

Theorem

Let B be a finite set of Boolean functions, let $k \in \mathbb{N}$ be fixed, and let (W, D) be a B-default theory such that the treewidth of structures for $\theta_{\text{extension}}$ is bounded by k.

Then the extension existence problem for B-default logic is solvable in time $O(f(k) \cdot |(W, D)|)$ and space $O(\log(f(k)) + \log |(W, D)|)$.

Lower bounds

Theorem

There exists a family of (very simple) default theories $(\emptyset, D)_k$ such that the tree width of $\mathcal{A}_{(\emptyset,D)_k}$ is not constant.

Transfer to Autoepistemic Logic

- Introduced by Moore 1985.
- New modal operator L to model the beliefs of a perfect rational agent.
- Satisfiability and reasoning $\Sigma_2^{\text{P}}\text{-complete.}$

Transfer to Autoepistemic Logic

- Introduced by Moore 1985.
- New modal operator L to model the beliefs of a perfect rational agent.
- Satisfiability and reasoning Σ_2^P -complete.

Theorem

Let B be a finite set of Boolean functions, let $k \in \mathbb{N}$ be fixed, and let Σ be a set of autoepistemic B-formulae such that \mathcal{A}_{Σ} has tree width bounded by k. Then the expansion problem is solvable in time $O(f(k) \cdot |\Sigma|)$ and space $O(\log(f(k)) + \log |\Sigma|)$.

• We got some intuition about nonmonotonicity.

- We got some intuition about nonmonotonicity.
- We learned how to apply Courcelle's Theorem.

- We got some intuition about nonmonotonicity.
- We learned how to apply Courcelle's Theorem.
- We enjoyed Monadic Second Order Logic. A lot.

- We got some intuition about nonmonotonicity.
- We learned how to apply Courcelle's Theorem.
- We enjoyed Monadic Second Order Logic. A lot.

Further (not in this talk) we exhibit lower bounds for very restricted

- default theories,
- sets of autoepistemic formulae, and

- We got some intuition about nonmonotonicity.
- We learned how to apply Courcelle's Theorem.
- We enjoyed Monadic Second Order Logic. A lot.
- Further (not in this talk) we exhibit lower bounds for very restricted
 - default theories,
 - sets of autoepistemic formulae, and
 - sets of propositional formulae (w.r.t. the implication problem).

- We got some intuition about nonmonotonicity.
- We learned how to apply Courcelle's Theorem.
- We enjoyed Monadic Second Order Logic. A lot.
- Further (not in this talk) we exhibit lower bounds for very restricted
 - default theories,
 - sets of autoepistemic formulae, and
 - sets of propositional formulae (w.r.t. the implication problem).

The next two steps involve:

- Thinking about useful kinds of parameterizations of propositional Default Logic beyond treewidth.
- And the same for autoepistemic logic.

- We got some intuition about nonmonotonicity.
- We learned how to apply Courcelle's Theorem.
- We enjoyed Monadic Second Order Logic. A lot.
- Further (not in this talk) we exhibit lower bounds for very restricted
 - default theories,
 - sets of autoepistemic formulae, and
 - sets of propositional formulae (w.r.t. the implication problem).

The next two steps involve:

- Thinking about useful kinds of parameterizations of propositional Default Logic beyond treewidth.
- And the same for autoepistemic logic.

Thank you!