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Motivation

Why this characterization?

Recent open problem stated by Morita

Reversible PDAs are weaker than DPDAs
Reversible LBAs are equivalent to DLBAs
What about automata between these?

L(RMFA) is strong: palindromes, unary primes, DYCK(1)

(D)MFAs characterize logspace very nicely

Logspace = constant amount of pointers

Usual reversibilization trick won’t work for RMFAs

No space for a history, or other garbage data
What to do if we cannot write at all?

Nice use case for techniques from recent RTM work
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Reversible Multi-head Finite Automata

Min

Md Md M

Mw Mw M

Mt Mt M

M1 M1 M
M2 M2 M
M3 M3 M

RMFA R

/a0 a1 a2 a3 a4 a5 a6 a7 a8q .

Input word w ∈ Σ∗ in delimited form B w C

k heads (all start by pointing at B)

Triple format transitions

symbol rules: (q, [a, b,B, · · · , c], p)
move rules: (q, [←, ↓,←, · · · ,→], p)

Reversibility = forward + backward determinism

Fwd determinsm: (q, s, ·) and (q, t, ·) imply s, t ∈ Σk , s 6= t
Bwd determinsm: (·, s, p) and (·, t, p) imply s, t ∈ Σk , s 6= t
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RMFA example

Doubling the unary counter in M1:
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M1 M1 M
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RMFA example
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RMFA example

Doubling the unary counter in M1
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RMFA example
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RMFA example

Doubling the unary counter in M1
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RMFA example: inversion

RMFAs are invertible: swap direction of transitions, swap← and→

Doubling the unary counter in M1

M1
M2 M2 M

/1 1 1 1 1 1 1 1 1r .

Invert:
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TM1
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RMFA example: inversion

RMFAs are invertible: swap direction of transitions, swap← and→

Doubling the unary counter in M1

M1
M2 M2 M

/1 1 1 1 1 1 1 1 1r .

Invert:

q a b c p d r
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1
.

] [
↓
←

] [
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.
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[
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.
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This is an RMFA for halving the unary counter in M1
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Reversible Turing Machines

input head

0 0 1

/

01 0

work head

1 0 0

RTM T

a0. a1 a2 a3 a4 a5 a6 a7 a8

track1

track2

track3

w0 w1 w2

q

Input tape as before, but only one input head.

Read/write work tape: one head, k binary tracks.
Space usage measured on the work tape.

Triple format transitions, but symbol rules can now write on
the work tape: (q, [a, 100 7→ 011], p).

Reversibility as before.
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What do we know & what shall we prove

L(RMFA)
Morita
== L(DMFA)

‖ Here ‖ Hartmanis’72

RevSPACE(log n)
Lange et al.’00

== DSPACE(log n)
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Proving L(RMFA) = RevSPACE(log n)

Will show RevSPACE(log n) ⊆ L(RMFA).

Proof: Simulate a logspace RTM with an RMFA.

Encoding of RTM configurations

Transition simulation

Tape read/write simulation
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Encoding logspace TM configurations in MFAs
TMs use k binary tracks, strictly log n tape bounded.

Min

M1 M1 M
M2 M2 M
M3 M3 M

Md Md M

Mw Mw M

Mt Mt M

input head

0 0 1

/

01 0

work head

1 0 0

TM T

a0. a1 a2 a3 a4 a5 a6 a7 a8

track1

track2

track3

w0 w1 w2

MFA M

/a0 a1 a2 a3 a4 a5 a6 a7 a8qq .

State q (in the TM) maps to q (in the MFA)

Min mirrors input head position

Mw is 2work head position places from B

M1,M2,M3, . . . ,Mk simulates work tape content by track

Mt ,Md are ancillary heads for book-keeping
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Encoding track content by head position

Min

M1 M1 M
M2 M2 M
M3 M3 M

Md Md M

Mw Mw M

Mt Mt M

input head

0 0 1

/

01 0

work head

1 0 0

TM T

a0. a1 a2 a3 a4 a5 a6 a7 a8

track1

track2

track3

w0 w1 w2

MFA M

/a0 a1 a2 a3 a4 a5 a6 a7 a8qq .

Track encoding: Mi points at an means tracki contains (bin(n))R :

track1 contains ‘001’, in reverse binary 100 = 4,

so M1 points at a4, encoding 4 in unary.

To read work cell w2 we must consult all of M1,M2,M3
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Simulating RTM transitions

By determinism, the transitions going out of source state q are

all symbol rules, or

a single move rule.

We’ll tackle these in turn.
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Simulating symbol transitions (q, [·, · 7→ ·], ·)

To simulate a symbol transition (q, [·, · 7→ ·], ·) we need

to read the input tape symbol (easy)

to read the work tape symbol (not so easy)

to write a new work tape symbol (easy)

to go into target state (not so easy)

Work tape symbol is encoded across all track heads by their
position alone, not the local symbol.

Use a staged reading of the symbols, store in the state.
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Simulating RTM symbol rules (q, [·, 7→ ·], ·)

q M1

q1

q0 · · ·

M2

q11 · · ·

q10 Min qb10

[
b

10 7→ 01

]
pb01

...

q

1

0

1

0
a

b

c

...

(Assuming we have a read procedure for track heads Mi .)
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Simulating RTM symbol rules (q, [b, 10 7→ 01], p)

q M1

q1

q0 · · ·

M2

q11 · · ·

q10 Min qb10

ra11

[
a

11 7→ 00

]

[
b

10 7→ 01

]
p

...

q

1

0

1

0
a

b

c

...

Doesn’t work: there can be other symbol transitions targeting p,
say, (r , [a, 11 7→ 00], p). Direct links to p break reversibility.

Solution: Exploit reversibility of the RTM. No other transition
targeting p can write both b and 01 to the tapes.
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Simulating RTM symbol rules (·, [·, · 7→ ·], p)

· · · qb10

[
b

10 7→ 01

]
pb01

q

Min

...

q

p01

M2

p00

p0

M1

p1· · ·

p

ra11· · ·
[

a
11 7→ 00

]
pa00 Min

...

b

a

c

...

0

1

b

a

0

1

Intuition: Link up the appropriate leaves of decision trees of source
states (r , q) with leaves of inverse decision tree for target state p.
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Simulating RTM symbol rules (q, [b, 10 7→ 01], p)

q M1

q1

q0 · · ·

M2

q11 · · ·

q10 Min qb10

[
b

10 7→ 01

]
pb01

...

q

Min

...

q

p01

M2

p00· · ·

p0

M1

p1· · ·

p

1

0

1

0
a

b

c

...

b

a

c

...

0

1
0

1

Subpart of symbol rule simulation for (q, [b, 10 7→ 01], p).
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Reading procedure

0 0 1

01 0

work head

1 0 0

track1

track2

track3

w0 w1 w2

1. Each track head encodes just 1 bit from each work tape cell.

2. If the RTM work head points to cell wp, then the RMFA work
head Mw is 2p cells to the right of B.

Idea: The pth bit of n in binary is

(n div 2p) mod 2 .
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Reading procedure 2

Idea: The pth bit of n in binary is

(n div 2p) mod 2 .

most sign. 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

least sign. 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Reading procedure: Read off pth bit from track i , by repeatedly
‘subtracting’ 2p (Mw ’s offset) from Mi . Mi ’s original position is
conserved in Mt , and the original position of Mw in Md .

Example: M2 point at a10, which encodes 1010. Mw points at w2,
so repeatedly subtract 22 = 4 from 10.
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Reading procedure 2
Idea: The pth bit of n in binary is

(n div 2p) mod 2 .

most sign. 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

least sign. 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
B M2

Reading procedure: Read off pth bit from track i , by repeatedly
‘subtracting’ 2p (Mw ’s offset) from Mi . Mi ’s original position is
conserved in Mt , and the original position of Mw in Md .

Example: M2 point at a10, which encodes 1010. Mw points at w2,
so repeatedly subtract 22 = 4 from 10, until we hit B.
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Reversible reading procedure for M1

q p

p0

r

r1

M1 =
Mw =
Md =
Mt =


1
1
.
.



←
←
→
→



1
.
1
1



←
→
←
→



1
1
1
1



1
1
1
1



.
.
1
1



.
1
1
1



.
1
.
1



.
1
1
1




1
1
.
1



Blue loop: subtract Mw from M1, believing the bit is 0.

Red loop: subtract Mw from M1, believing the bit is 1.and some
extra whitespace...
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Reversible reading procedure for M1

q p

p0

r

r1q0 q1

M1 =
Mw =
Md =
Mt =


1
1
.
.



←
←
→
→



1
.
1
1



←
→
←
→



1
1
1
1



1
1
1
1



.
.
1
1



.
1
1
1



.
1
.
1



.
1
1
1




1
1
.
1



rollback rollback

Problem: head positions are not conserved.

Solution: rollbacks are inverse copies of the reading procedure,
restoring all heads to their previous positions, reversibly!
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Reversible writing procedure

An RTM symbol rule such as (q, (a, 1010 7→ 0011), p) define
explicit bit flips. Flipping the pth bit encoded on track i is simple:

0 7→ 1: move Mi 2p positions to the right

1 7→ 0: move Mi 2p positions to the left

Example: Let M2 point at a10, which encodes 1010. To flip the 3rd
bit from 0 to 1 we move M2 22 right. It then points at a14,
encoding 1110.

Although overwriting symbols in general is irreversible, overwriting
a specific known symbol is not.
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Simulate move rules

Simulating an RTM move (q, [←,→], p) is considerably easier.

The RMFA does as follows.

From q,

Min mirrors input head,

if work tape head moves:

right, then double Mw

left, then halve Mw (with inverse doubling procedure)

go into state p.

Note: We do not have to worry about about other transitions
targeting p, because by reversibilty there are no others!
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Summary

We now have:

Encoding from RTM to RMFA configuration

Simulation of RTM transitions in the RMFA

So we’re done with showing RevSPACE(log n) ⊆ L(RMFA).

The reverse inclusion, L(RMFA) ⊆ RevSPACE(log n) is
considerably easier, so

RevSPACE(log n) = L(RMFA) .

Future work: Other reversible automata models, 2-way vs. 1-way.

24



www.reversible-computation.org

Home
Call for Papers
Program Committee
Paper Submission
Location
Previous Editions
Contact

Home

Welcome to the
4th Workshop on Reversible Computation

July 2nd-3rd, 2012, Copenhagen, Denmark

Deadline extended:
- Abstract Submission: March 9th, 2012
- Submission Deadline: March 16th, 2012

The Workshop on Reversible Computation will
bring  together  researchers  from  computer
science,  mathematics,  engineering,  and
physics  to  discuss  new  developments  and
directions for future research in the emerging
area  of  Reversible  Computation.  This
particularly  includes  applications  of
reversibility  in  quantum  computation.
Research  papers,  tutorials,  tool
demonstrations, and work-in-progress reports
are within the scope of the workshop.

The 4th Workshop on Reversible Computation
will take place on July 2nd and 3rd, 2012 in
Copenhagen,  Denmark  and  is  organized  by
the  University  of  Copenhagen.  Accepted
papers  will  appear  in  the  preliminary
proceedings  at  the  workshop.  Furthermore,
authors of selected papers will be invited after
the  workshop  to  prepare  a  final  version  of
their  paper  to  be  published  in  Springer's
Lecture Notes in Computer Science (LNCS).

The Workshop will be held in parallel with the
European  Conference  on  Modelling
Foundations and Applications.

Download
Call for Paper 2012

University of Copenhagen | info@reversible-computation.org | e 

Reversible Computation 2012 (RC2012) | Welcome http://www.reversible-computation.org/2012/cms/

1 of 1 07/03/12 10.12

4th edition on July 2nd-3rd in Copenhagen, Denmark25

www.reversible-computation.org

