

Reversible Multi-head Finite Automata Characterize Reversible Logarithmic Space

Holger Bock Axelsen

DIKU, Dept. of Computer Science, University of Copenhagen, Denmark www.diku.dk/~funkstar

LATA, A Coruña, 7 March 2012

Overview

- Motivation
- Informal acronyms: RMFAs and RTMs
- Simulating a logspace RTM with an RMFA
 - Encoding of configurations
 - Simulation of transitions
 - Read/write procedures
- Summing up

Motivation

Why this characterization?

- Recent open problem stated by Morita
 - Reversible PDAs are weaker than DPDAs
 - Reversible LBAs are equivalent to DLBAs
 - What about automata between these?
- $\mathcal{L}(\mathsf{RMFA})$ is strong: palindromes, unary primes, DYCK(1)
- (D)MFAs characterize logspace very nicely
 - Logspace = constant amount of pointers
- Usual reversibilization trick won't work for RMFAs
 - No space for a history, or other garbage data
 - What to do if we *cannot* write at all?
- Nice use case for techniques from recent RTM work

Reversible Multi-head Finite Automata

- Input word $w \in \Sigma^*$ in delimited form $\vartriangleright w \lhd$
- k heads (all start by pointing at \triangleright)
- Triple format transitions
 - symbol rules: $(q, [a, b, \rhd, \cdots, c], p)$
 - move rules: $(q, [\leftarrow, \downarrow, \leftarrow, \cdots, \rightarrow], p)$
- Reversibility = forward + backward determinism
 - Fwd determinsm: (q, s, \cdot) and (q, t, \cdot) imply $s, t \in \Sigma^k$, $s \neq t$
 - Bwd determinsm: (\cdot, s, p) and (\cdot, t, p) imply $s, t \in \Sigma^k$, $s \neq t$

$$q \xrightarrow[]{} 1 \xrightarrow[$$

$$b \xrightarrow[]{} 1 \xrightarrow[$$

$$c \xrightarrow[\Delta_2]{\Delta_1} c$$

$$a \xrightarrow[\Delta_2]{} 1 \xrightarrow[\Delta_1]{} 1 \xrightarrow[\Delta_2]{} 1 \xrightarrow[\Delta_2]{$$

$$a \xrightarrow[\begin{subarray}{c} 1 \\ \hline \begin{subarray}{c} 1 \\ \hline \begin{subar$$

$$p \xrightarrow[\Delta_1]{} 1 \xrightarrow[\Delta_1]{} 1 \xrightarrow[\Delta_2]{} 1 \xrightarrow[\Delta_2]{} 1$$

$$d \xrightarrow[]{} 1 \xrightarrow[]{} 2 \xrightarrow[$$

$$d \xrightarrow[]{} 1 \xrightarrow[$$

$$d \xrightarrow[\Delta_2]{} d \xrightarrow[\Delta_2]{$$

$$d \xrightarrow[]{\triangleright} 1 1 1 1 1 1 1 1 1 1 1 1 1 4$$

RMFA example: inversion

RMFAs are <code>invertible</code>: swap direction of transitions, swap \leftarrow and \rightarrow

Doubling the unary counter in \triangle_1

Invert:

RMFA example: inversion

RMFAs are *invertible*: swap direction of transitions, swap \leftarrow and \rightarrow Doubling the unary counter in \triangle_1

Invert:

This is an RMFA for halving the unary counter in \triangle_1

Reversible Turing Machines

- Input tape as before, but only one input head.
- Read/write work tape: one head, k binary tracks.
 - Space usage measured on the work tape.
- Triple format transitions, but symbol rules can now write on the work tape: $(q, [a, 100 \mapsto 011], p)$.
- Reversibility as before.

What do we know & what shall we prove

Proving $\mathcal{L}(\mathsf{RMFA}) = \mathsf{RevSPACE}(\log n)$

Will show RevSPACE(log n) $\subseteq \mathcal{L}(RMFA)$.

Proof: Simulate a logspace RTM with an RMFA.

- Encoding of RTM configurations
- Transition simulation
- Tape read/write simulation

Encoding logspace TM configurations in MFAs

TMs use k binary tracks, strictly log n tape bounded.

TM *T*

MFA M

- State q (in the TM) maps to q (in the MFA)
- △_{in} mirrors input head position
- \triangle_w is 2^{work head position} places from \triangleright
- $\triangle_1, \triangle_2, \triangle_3, \dots, \triangle_k$ simulates work tape *content* by track
- \triangle_t, \triangle_d are ancillary heads for book-keeping

Encoding track content by head position

Track encoding: \triangle_i points at a_n means track_i contains $(bin(n))^R$:

- track₁ contains '001', in reverse binary 100 = 4,
- so \triangle_1 points at a_4 , encoding 4 in unary.

To read work cell w_2 we must consult all of $\triangle_1, \triangle_2, \triangle_3$

Simulating RTM transitions

By determinism, the transitions going out of source state q are

- all symbol rules, or
- a single move rule.

We'll tackle these in turn.

Simulating symbol transitions $(q, [\cdot, \cdot \mapsto \cdot], \cdot)$

To simulate a symbol transition $(q, [\cdot, \cdot \mapsto \cdot], \cdot)$ we need

- to read the input tape symbol (easy)
- to read the work tape symbol (not so easy)
- to write a new work tape symbol (easy)
- to go into target state (not so easy)

Work tape symbol is encoded across all track heads by their *position alone*, not the local symbol.

Use a *staged reading* of the symbols, store in the state.

Simulating RTM symbol rules $(q, [\cdot, \mapsto \cdot], \cdot)$

(Assuming we have a read procedure for track heads \triangle_i .)

Simulating RTM symbol rules $(q, [b, 10 \mapsto 01], p)$

Doesn't work: there can be *other* symbol transitions targeting p, say, $(r, [a, 11 \mapsto 00], p)$. Direct links to p break reversibility.

Solution: Exploit reversibility of the RTM. *No other transition targeting p can write both b and* 01 *to the tapes.*

Simulating RTM symbol rules $(\cdot, [\cdot, \cdot \mapsto \cdot], p)$

Intuition: Link up the appropriate leaves of decision trees of source states (r, q) with leaves of inverse decision tree for target state p.

Simulating RTM symbol rules $(q, [b, 10 \mapsto 01], p)$

Subpart of symbol rule simulation for $(q, [b, 10 \mapsto 01], p)$.

Reading procedure

1. Each track head encodes just 1 bit from each work tape cell.

2. If the RTM work head points to cell w_p , then the RMFA work head \triangle_w is 2^p cells to the right of \triangleright .

Idea: The *p*th bit of *n* in binary is

 $(n \operatorname{div} 2^p) \mod 2$.

Reading procedure 2

Idea: The *p*th bit of *n* in binary is

 $(n \operatorname{div} 2^p) \mod 2$.

Reading procedure: Read off *p*th bit from track *i*, by repeatedly 'subtracting' 2^p (\triangle_w 's offset) from \triangle_i . \triangle_i 's original position is conserved in \triangle_t , and the original position of \triangle_w in \triangle_d .

Reading procedure 2

Idea: The *p*th bit of *n* in binary is

 $(n \operatorname{div} 2^p) \mod 2$.

most sign.	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
least sign.	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
\triangleright								$ riangle_2$								

Reading procedure: Read off *p*th bit from track *i*, by repeatedly 'subtracting' 2^p (\triangle_w 's offset) from \triangle_i . \triangle_i 's original position is conserved in \triangle_t , and the original position of \triangle_w in \triangle_d .

Example: \triangle_2 point at a_{10} , which encodes 1010. \triangle_w points at w_2 , so repeatedly subtract $2^2 = 4$ from 10, until we hit \triangleright .

Reversible reading procedure for \triangle_1

Blue loop: subtract \triangle_w from \triangle_1 , believing the bit is 0. Red loop: subtract \triangle_w from \triangle_1 , believing the bit is 1.

Reversible reading procedure for \triangle_1

Problem: head positions are not conserved.

Solution: *rollbacks* are *inverse* copies of the reading procedure, restoring all heads to their previous positions, *reversibly*!

Reversible writing procedure

An RTM symbol rule such as $(q, (a, 1010 \mapsto 0011), p)$ define *explicit* bit flips. Flipping the *p*th bit encoded on track *i* is simple:

- $0 \mapsto 1$: move $\triangle_i 2^p$ positions to the *right*
- $1 \mapsto 0$: move $\triangle_i 2^p$ positions to the *left*

Example: Let \triangle_2 point at a_{10} , which encodes 1010. To flip the 3rd bit from 0 to 1 we move $\triangle_2 2^2$ right. It then points at a_{14} , encoding 1110.

Although overwriting symbols *in general* is irreversible, overwriting a *specific* known symbol is not.

Simulate move rules

Simulating an RTM move $(q, [\leftarrow, \rightarrow], p)$ is considerably easier.

The RMFA does as follows.

- From q,
- △ *in* mirrors input head,
- if work tape head moves:
 - right, then double \triangle_w
 - left, then halve \triangle_w (with inverse doubling procedure)
- go into state p.

Note: We do *not* have to worry about about other transitions targeting *p*, because by reversibilty there *are no others*!

Summary

We now have:

- Encoding from RTM to RMFA configuration
- Simulation of RTM transitions in the RMFA

So we're done with showing RevSPACE(log n) $\subseteq \mathcal{L}(RMFA)$.

The reverse inclusion, $\mathcal{L}(\mathsf{RMFA}) \subseteq \mathsf{RevSPACE}(\log n)$ is considerably easier, so

 $\operatorname{RevSPACE}(\log n) = \mathcal{L}(\operatorname{RMFA}).$

Future work: Other reversible automata models, 2-way vs. 1-way.

www.reversible-computation.org

Impress - Contact - Webmaster

University of Copenhagen | info@reversible-computation.org | e

4th edition on July 2nd-3rd in Copenhagen, Denmark